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Abstract. In the last years, the need for the color octet state in inclusive P-wave charmonium decay has
been firmly established. However, the implications of this in the corresponding exclusive reactions have
not been fully recognized. We argue for the necessity of the color octet in P- and higher-wave quarkonium
decay. Using a set of phenomenologically constructed baryon wave functions, we consider the χJ decay
into an octet and decuplet baryon–antibaryon pair. By doing so, we subject the wave functions to a test of
applicability. We show that the color singlet component alone is insufficient to account for the experimental
measurements, and only by including the color octet contribution can the partial theoretical decay widths
be brought into the range of the data. By the present and earlier applications of the set of wave functions,
these show themselves to be reasonable model wave functions at around the scale Q2 ∼ 10–20 GeV2.

1 Introduction

In studying strong interaction exclusive processes, a reli-
able method is the one that bases itself on perturbative
QCD, which calls to mind the like of deep inelastic scat-
tering. However, unlike these inclusive reactions where the
final states of the hadrons can be summed over, so no ex-
plicit knowledge of any of the hadrons is required, in ex-
clusive processes one is usually interested specifically only
in a few final hadrons at a time; therefore knowledge of
the wave functions of these hadrons is essential. The more
accurate picture of a hadron is the Fock state expansion
where it is seen as a sum of states with an increasing num-
ber of constituents starting from the state with only the
valence quarks and/or antiquarks. The probability of the
hadron being in any of these states is given by the mod-
ulus squared of the wave function associated with each of
these states:
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Because the number of constituents is unlimited, one
would require, in general, far too much information before
an exclusive process involving even just a few hadrons can
be studied. Fortunately as shown by Brodsky and Lepage
in [1] in the so-called standard hard scattering approach
(SHSA), when a high momentum transfer or high Q2 is
involved in an exclusive process, not only is there fac-
torization and so the process can be partially calculated
perturbatively, but also only the lowest valence Fock state
wave functions of the hadrons are needed. The higher Fock
states are suppressed by the large Q2. Thus the large mo-
mentum transfer acts as a filter to let pass only the lowest
state of the hadrons. It has also been proved by Duncan
and Mueller [2] that these points are also true in quarko-
nium decay with a large timelike momentum transfer.

Most recent developments in inclusive quarkonium
physics have seen, on the other hand, the need for the
next higher Fock state in P-wave quarkonia [3,4], the so-
called color octet, where the heavy QQ̄ pair is in a color
octet rather than the usual color singlet as in the valence
state. This higher state is made up of the QQ̄ plus a gluon.
This is special to heavy quarkonium and can be under-
stood in terms of a suppression on the level of the wave
function due to angular momentum as we will explain in
later sections. The advance in inclusive processes involv-
ing quarkonia has yet to fully bring about the same level
of understanding in the corresponding exclusive process.
Part of our goals in this paper is therefore to show that
the color octet is not only important in inclusive but also
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in exclusive processes. We will achieve this by studying
P-wave χJ decay into baryon–antibaryon.

As mentioned above, knowledge of the hadronic wave
functions is very important. Even in large momentum
transfer processes, valence wave functions are still nec-
essary. Since bound state wave equations in QCD are too
hard to solve, other ways to obtain the solutions or the
hadronic wave functions must be used. One way is via
QCD moment sum rules [5–7]. However, it has been shown
in [8] that a perturbative calculation of the proton mag-
netic form factor using the range of existing nucleon dis-
tribution amplitudes thus obtained gives results that are,
on the average, at least a factor of two below the experi-
mental measurements in the range of Q2 up to 50 GeV2. It
is therefore clear that the perturbative contribution is not
dominant in this rather low range ofQ2. This has also been
pointed out in [9]. Nucleon wave functions constructed
from such distribution amplitudes are, therefore, not ap-
plicable in reactions with values ofQ2 far from asymptotic,
not to mention the fact that there might be ambiguities
in the distribution amplitudes determined in this way.

In order to obtain a nucleon wave function that is suit-
able for application at values as low as 10 GeV2, the usu-
ally neglected but nevertheless ever present soft overlap
between the final and initial nucleon wave function con-
tribution to the magnetic form factor is taken to make
up for the difference between the perturbative contribu-
tion and the experimental measurements. It was shown in
[10] that a nucleon model wave function could indeed be
constructed this way, using constraints from the valence
quark distribution, the J/ψ decay width into a nucleon–
antinucleon pair, and existing data on the nucleon elec-
tromagnetic form factor. We are motivated in this regard
to show that the above construction of a model nucleon
wave function and its generalization to other octet and
decuplet baryons [11] provides a reasonable description of
the baryonic valence Fock state wave functions at around
10 GeV2. To do that we must apply these wave functions
to exclusive processes. Our investigation will allow us to
study this as well as the color octet contribution.

Since in χJ decay into a baryon–antibaryon pair only a
nucleon–antinucleon pair in the final state has been mea-
sured, our calculations will show first that the color sin-
glet contribution alone is not sufficient and by including
that of the octet, the partial decay width can be brought
into reasonable agreement with experiment. Then with the
generalization of the nucleon wave function to the whole
flavor octet and decuplet multiplet, we can provide pre-
dictions for the widths of the χJ decay into other baryon
pairs.

The paper is organized as follows. First we review
briefly in Sect. 2 the angular momentum suppression in
the P-wave wave function, and in Sect. 3 we give a theo-
retical argument for the inclusion of the color octet com-
ponent in the exclusive decay process. In Sect. 4, the set
of phenomenologically constructed baryon wave functions
will be presented and explained before we use the im-
proved modified hard scattering scheme (MHSA) of Botts,
Li and Sterman [12,13] to obtain the singlet contribution

in Sect. 5 and 6. The results will be compared to experi-
ment. In Sect. 7, our method of obtaining a wave function
of the higher color octet state of the χJ and the Feynman
graphs of the decay process will be given. The details in
constructing the octet contribution to the hard perturba-
tive part TH will be explained in Sect. 8. The actual cal-
culation and the results are in Sect. 9 and 10, respectively.
In the appendices, all essential details of the calculation,
the propagators and the numerators of the graphs used in
Sect. 9 are given.

2 Angular momentum suppression
of charmonium wavefunctions

In this section, we show that there is a suppression of the
charmonium wave function due simply to the angular mo-
mentum of the heavy quark–antiquark system. This has
important consequences as we will see in the next section,
where we briefly review the more detailed argument given
in [14]. The hadronic decay of charmonium is through the
annihilation of the charm with the anticharm, which is
a short distance process because of the heavy charmo-
nium mass. The annihilation size L is roughly given by
L ∼ 1/M , the inverse of the heavy mass M . The char-
monium wave function, which must enter the decay prob-
ability amplitude, is therefore needed predominantly at
L ∼ 1/M ∼ 0 for heavy charmonium decay. That is, we
have ψS(L) ∼ ψS(0) for the wave function at the spatial
origin. This is the case for S-wave charmonium such as ηc

or J/ψ. For P-wave charmonium, the wave function in fact
vanishes at the origin, so instead one has to expand the
wave function around the origin. What enters the proba-
bility amplitude is actually ψP(L) ∼ Lψ′

P(L) ∼ Lψ′
P(0).

Going to momentum space, the probability amplitudes for
S- and P-wave decay include the wave function of the form

S-wave: ψS(L) −→ ψ̃S(k),

P-wave: ψP(L) ∼ Lψ′
P(0) −→ k

M
ψ̃P(k),

respectively, where k is the internal momentum of the
charmonium, and the average value 〈k〉 is of the order
of a few hundreds MeV. So it becomes clear that P-wave
decay is suppressed by 1/M in comparison to S-wave at
the level of the wave function. This suppression is one of
the reasons why the color octet is necessary for P-wave
inclusive decay. We will see in the next section that it also
provides the reason for its inclusion in exclusive decays.

3 Comparison of the large scale dependence
of color singlet and color octet

The simplest scheme to calculate the charmonium partial
decay width that is built on the solid basis of perturbative
QCD is the hard scattering approach of Brodsky and Lep-
age [1]. In this scheme, the decay probability amplitude
can be factorized into a hard and soft part and is given by
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a convolution of hadronic distribution amplitudes, the φ’s,
and the hard perturbative part TH. For the decay of χJ

into a baryon–antibaryon, or more specifically a nucleon–
antinucleon, this is

M∼ fχJ
φχJ

(x)⊗ fNφN (x)⊗ fN̄φN̄ (x)⊗ TH(x). (1)

Since the distribution amplitudes are nothing but the
hadronic wave functions with their internal transverse mo-
menta being integrated over, there is still the decay con-
stant f accompanying each distribution amplitude. While
the amplitudes themselves are dimensionless, the decay
constants f carry different mass dimensions, depending
on the original hadronic wave functions. From the fact
that the partial decay width is given by

Γpartial ∼ |M|2/M, (2)

and there is only one mass scale M in the process, namely
the heavy charmonium mass, we can use power counting
on (1) to compare, once the mass dimensions of the decay
constants are known, the color singlet and octet contri-
bution to the decay width and hence their relative im-
portance to a particular hadronic decay process. For the
determination of the mass dimension of f , we refer to [14].

Examining (1), we see that the decay constant of the
valence Fock state of the nucleon fN and the color octet
charmonium decay constant f (8)

χJ are both 3-particle wave
functions. Therefore, they must be of mass dimension two.
The color singlet decay constant f (1)

χJ , on the other hand, is
a 2-particle wave function so it should be of dimension one.
However, the fact that χJ are P-wave charmonia increases
this to dimension two. The only remaining quantity in (1)
that has a dimension is TH, which contains a hidden power
of M . This power must make up the right dimension for
M, which must be dimension one in view of (2). So we
can now collect all the dimensional quantities in the color
singlet and octet probability amplitudes and determine
their dependence on the large scale M . We get

M(1) ∼ M
f
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(
fN

M2
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∼ 1
M5 , (3)
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It is now clear that both the singlet and octet contribu-
tion for the P-wave χJ are weighted by the inverse fifth
power of the charmonium mass. The color octet, although
a higher Fock state of the charmonium, is not suppressed
by the large scale of the decay process in relation to the
valence singlet state.

If there were no suppression at the level of the P-wave
wave function as explained in the previous section, for ex-
ample in the case of J/ψ decay, the dependence of the
singlet contribution on M would have been 1/M4. There-
fore, the color octet contribution can be neglected in the
decay of a S-wave but not that of a P-wave charmonium.
For more details of the argument above, one can consult
[14].

4 Baryon wavefunctions

4.1 Octet baryons

As mentioned in Sect. 1, most model wave functions con-
structed from QCD moment sum rules [5–7,15–17] lead
to rather unsatisfactory distribution amplitudes at mod-
erate Q2 [8,9] and they certainly do not describe the ex-
perimental data. A different model wave function suitable
for the application at such low momentum transfers was
constructed in [10]. This construction is based on the fol-
lowing form of the nucleon wave function,

|p,+〉 =
εa1a2a3√

3!

∫
[dx][d2k⊥]

× {ΨN
123|ua1

+ u
a2− da3

+ 〉+ ΨN
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+ d
a3
+ 〉

− (ΨN
132 + ΨN

231)|ua1
+ u

a2
+ d

a3− 〉
}
. (5)

which is the most general of the nucleon wave function
with zero orbital angular momentum [18]. The nucleon,
being an isospin doublet, is also the lowest energy state
of the baryons and it is therefore reasonable to assume
that it has zero orbital angular momentum. These condi-
tions permit the presence of only one scalar function Ψ ,
which is a function of the light-cone momentum fractions
xi and the internal transverse momentum k⊥i of the nu-
cleon. In the notation of [10], it is given in terms of the
nucleon decay constant, or equivalently the wave function
at the origin fN , the distribution amplitude φ123 and the
function containing the transverse momentum dependence
ΩN , by

Ψ123(x,k⊥) = Ψ(x1, x2, x3;k⊥1,k⊥2,k⊥3)

=
1

8
√

3!
fN (µF )φN

123(x, µF )ΩN (x,k⊥), (6)
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(
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are the usual constrained integration measures over the
momentum fractions and the internal transverse momenta.
The function ΩN is conveniently taken to be of Gaussion
form:

ΩN (x,k⊥) = (16π2)2
a4

N

x1x2x3

× exp

[
−a2

N

3∑
i=1

k⊥i
2/xi

]
. (9)

where aN is a transverse size parameter which was fitted
with the decay constant fN to the experimental data by
the procedure described in [10] to be aN = 0.75 GeV−1

and fN (µ0) = 6.64 × 10−3 GeV2 at the reference scale
µ0 = 1.0 GeV.
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The distribution amplitude φ123 as well as the decay
constant have to be evolved to the factorization scale µF of
the process in question. In terms of the eigenstates of the
evolution equation, the effect of the evolution is to change
the coefficients of each eigenstate by a certain power of
the log of the relevant scale. The nucleon distribution am-
plitude expressed in the Appell polynomial eigenbasis is

φN
123(x, µF ) = φAS(x)

[
1 +

∞∑
n=1

BN
n (µF ) φ̃n

123(x, µF )

]

= φAS(x)
[
1 +

3
4
φ̃1

123(x) +
1
4
φ̃2

123(x)
]

= 60x1x2x3[1 + 3x1]. (10)

Under a change of scale both the coefficients BN
n of the ex-

pansion and the decay constant are scaled by the following
factors of logarithm of the relevant scale µF :

fN (µF ) = fN (µ0)
(

ln(µ0/ΛQCD)
ln(µF /ΛQCD)

)2/3β0

, (11)

BN
n (µF ) = BN

n (µ0)
(

ln(µ0/ΛQCD)
ln(µF /ΛQCD)

)γ̃n/β0

, (12)

where the γ̃n are the reduced anomalous dimensions and
β0 is the first coefficient of the β function. The last line in
(10) is the expression for φN

123 at the scale µF = µ0.
As shown in [11], the form of the nucleon wave func-

tion need not be restricted to the SU(2) isospin doublet.
On the contrary, one can extend it to the complete SU(3)
flavor octet. The simplest way to do this, with SU(3)
flavor symmetry breaking by the heavier strange quark
mass taken into account, is to assume that the complete
baryon octet shares the same octet transverse size pa-
rameter, aB8 = 0.75 GeV and the octet decay constant,
fB8 = 6.64×10−3 GeV2. Then the flavor symmetry break-
ing effects are all put into the octet distribution ampli-
tudes φB8

123 and they manifest themselves as an uneven dis-
tribution of the light-cone momentum fractions amongst
the valence quarks. As shown in [11], introducing an addi-
tional exponential dependence on the strange constituent
quark mass ms, of the form

exp
(
−a

2
B8
m2

s

xj

)
, (13)

in the distribution amplitude for each strange quark with
label j suffices for the purpose. Using several different val-
ues of ms, representative sets of the expansion coefficients
BB8 of the octet distribution amplitudes φB8

123 can be ob-
tained. Set 3 in [11], obtained with ms = 350 MeV, is most
promising and will be used in the following investigations.

The octet baryon wave functions with positive helici-
ties can then be expressed as follows:

|B8,+〉 =
εa1a2a3√

3!

∫
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× {ΨB8
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1+f
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132 + ΨB8
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|Λ,+〉 =
εa1a2a3√

2
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× {ΨΛ
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+ d
a2− sa3
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+ s
a3
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+ (ΨΛ
132 − ΨΛ

231)|ua1
+ d

a2
+ s

a3− 〉}, (15)

where fai
j stands for the quark flavor of quark j with color

ai and ΨB8
123 is the corresponding scalar functions in (6) of

the octet baryons. The Λ is a slightly different member
of the flavor octet multiplet. Being an isospin singlet, it
has to vanish under the action of SU(2)isospin and there-
fore has different signs between the different wave function
components.

4.2 Decuplet baryons

As we mentioned in the Introduction, our interest in this
investigation is the χJ decay into a baryon–antibaryon
pair. Unlike the octet baryon–antibaryon which can be
coupled only to spin S = 1, a decuplet baryon–antibaryon
pair can coupled to S = 2 as well. This leads to the in-
teresting potential possibility of χ2 with Sz = 2 to decay
into a coupled decuplet baryon pair with the same total
third component of the spin. However, within perturba-
tive QCD, this is not possible due to quark and gluon
coupling via a vector coupling. This results in the well-
known helicity conservation or helicity sum rule, which
forces the outgoing baryon–antibaryon pair to have zero
total helicity [19]. Or in other words, they must be in a
total spin one state. For the same reason, χ0 decay into
baryon–antibaryon is forbidden. Therefore for the decu-
plet baryons, all we need are the helicity +1 decuplet
baryon wave functions.

Starting from the ∆++, the simplest distribution am-
plitude which is symmetric between the three u-quarks is
the asymptotic distribution amplitude φAS(x). Using this
as the starting point, one can likewise generalize to the
whole decuplet baryon multiplet and introduce SU(3) fla-
vor symmetry breaking in the same manner as in Sect. 4.1
by using an exponential ms dependence. This again yields
several sets of representative expansion coefficients BB10

n

for the decuplet baryon distribution amplitudes φB10
123 (x).

They are listed in Table 1. The decuplet wave functions
can be expressed in a similar fashion as before:
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εa1a2a3√

2
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+ u
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+ 〉, (16)

|B10,+〉 =
εa1a2a3√
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1+f

a3
2+〉

+ ΨB10
132 |fa1

1+f
a2
1+f

a3
2−〉}, (17)

and now the scalar functions are

ΨB10
123 (x,k⊥) =

fB10(µF )
24
√

2
φB10

123 (x, µF )ΩB10(x,k⊥). (18)
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Table 1. The expansion coefficients of the distribution am-
plitudes φB10

123 of the octet baryons considered in the χJ de-
cay. The parameters associated with this set of coefficients are
fB10(µ0) = 0.0143 GeV2 and aB10 = 0.80 GeV−1

B1 B2 B3 B4 B5

∆ 0.000 0.000 0.000 0.000 0.000
Σ∗ -0.547 0.182 -0.216 -1.081 0.062
Ξ∗ 0.540 -0.180 -0.382 1.742 -0.413

As shown in [11], using the assumption that the nucleon
and the delta have the same valence Fock state probabil-
ities, the decuplet decay constant and the transverse size
parameter can take a range of values. We take as rep-
resentative values fB10(µ0) = 0.0143 GeV2 and aB10 =
0.80 GeV−1.

5 χj decay
in the modified hard scattering approach

Since the χ0 decay into a baryon–antibaryon pair is for-
bidden by angular momentum conservation and the not-
yet-confirmed 1P1 state hc cannot preserve C-parity and
parity simultaneously in this decay mode [22] in a pertur-
bative approach, only χ1 and χ2 may have finite partial
decay widths1 into a baryon–antibaryon pair. The helic-
ity amplitudes in covariant form in terms of the baryon–
antibaryon spinors uB(p, λ) and vB(p, λ) suitable for our
consideration are, for χ1

M1
λ1λ2λ = ūB(p1, λ1)B1γ

νvB(p2, λ2)εν(λ), (19)

and for χ2

M2
λ1λ2λ = ūB(p1, λ1)B2γ

νvB(p2, λ2)εµν(λ)

× (pµ
2 − pµ

1 )
Mχ2

, (20)

where εµ and εµν are the polarization vector and tensor
of χ1 and χ2, respectively and BJ are their corresponding
decay form factors. Note that (19) and (20) are the only
covariant forms permitted for the corresponding helicity
amplitudes. Using only γµ, (p2 − p1)µ and gµν to form
a vector and a symmetric tensor, they are the only form
that can be constructed which still respects helicity con-
servation. The decay widths into a baryon–antibaryon are
therefore

Γ (χ1 → BB̄) =
ρp.s.(MB/Mχ1)

16πMχ1

1
3

∑
λ′s

∣∣M1
λ1λ2λ

∣∣2
1 In practice, χ0 has a surprisingly large upper bound on

the partial width of the decay channel in question [23] and the
hc may also have a non-zero partial decay width. This should
be attributed to non-perturbative soft physics or higher twist
effects since mass corrections alone should not yield such a
large width assuming that the experimental width is near the
upper limit

=
ρp.s.(MB/Mχ1)m

2
c

3πMχ1

∣∣BB
1

∣∣2 , (21)

and

Γ (χ2 → BB̄) =
ρp.s.(MB/Mχ2)

16πMχ2

1
5

∑
λ′s

∣∣M2
λ1λ2λ

∣∣2

=
ρp.s.(MB/Mχ2)m

2
c

10πMχ2

∣∣BB
2

∣∣2 . (22)

Since in the standard or modified hard scattering scheme
baryons are treated as massless in comparison to the large
scale M of the process, phase space must be corrected.
This is taken care of by the phase space factor in the
above equations given by ρp.s.(z) = (1− 4z2)1/2.

Within the SHSA, one has a factorization by which the
soft infrared physics is contained in the light-cone wave
functions and a perturbatively calculable hard scattering
amplitude TH. In the present problem, the hard scale is set
by twice the charm quark mass 2mc, rather than by the
charmonium mass MχJ

, because, as we mentioned before,
the cc̄ pair annihilates at a much smaller size than that of
the charmonium. This explains the appearance of m2

c in
(21) and (22). The decay amplitudes, or equivalently, the
decay form factors BJ are expressed as a convolution of the
hadron wave functions and the hard scattering amplitude
TH. Based on this approach, there are already a number of
works on charmonium decay into the nucleon–antinucleon
[24–27]. However, we consider these as incomplete for the
following reasons. First, they used a number of nucleon
wave functions which did not describe the correct physics
at the scale of the order of MχJ

. As shown in [8], none of
these wave functions are able to describe the data of the
nucleon magnetic form factor. Second, their treatments of
αs are ambiguous given that the decay widths depend on
α6

s ; any small changes in the value of αs used will change
the width considerably. It is therefore not difficult to ob-
tain a width that matches the experimental decay widths.
All one has to do is to choose the right value of αs. This
is very arbitrary in our opinion. A better way is to deter-
mine the scale at which αs should be evaluated by using
the virtualities of the internal exchanged gluons. However,
these virtualities in the SHSA depend on the light-cone
momentum fractions. One will encounter problems as the
end point region is approached when some of these gluon
virtualities drop down to Λ2

QCD. αs will become large and
the perturbative part of the SHSA breaks down. another
treatment of this problem such as arbitrarily freezing αs at
some values as the virtualities become small, or using an
equally arbitrary gluon mass, is not well justified. Third,
as we have already discussed due to the development first
shown in [3,4] that the contributions from the next higher
Fock state of the P-wave charmonium, where the cc̄ pair is
in a color octet, are comparable to that of the lowest color
singlet contribution because of the suppression by angular
momentum. To the best of our knowledge, color octet con-
tributions have not been taken into account in most exclu-
sive reaction involving P- and higher wave charmonium.
In the case of the decay into light pseudoscalar mesons,
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this has been worked out recently within the SHSA in [20]
and within the MHSA in [21].

To deal with the above deficiencies of the previous
calculations, the phenomenologically constructed nucleon
wave function and its generalization to the whole of the
octet and decuplet baryon multiplets [10,11] should pro-
vide better baryon wave functions at around 10 GeV2.
The problem with the coupling can be dealt with suc-
cessfully with the MHSA, although it complicates the cal-
culation with the additional, but necessary transverse mo-
mentum dependence for a self-consistent description. The
above mentioned end point problem in which one runs
into the infrared non-perturbative region within a pertur-
bative scheme is cured by the introduction of radiative
corrections in the form of a Sudakov factor which spans
the energy range between the lower factorization scale µF

and the higher hard scale of the process in question. The
Sudakov factor with transverse size dependence was first
calculated in [12,13] and was shown to cure the problem in
the case of the pseudoscalar meson scattering. In the case
of baryons, this will provide a cure of the above problem
only if one supplements the Sudakov suppression factor
with the MAX prescription for deciding the infrared cutoff
scale [8]. This amounts to choosing the largest transverse
separation scale as the infrared cutoff, which is physical
in the sense that very long wavelength gluons cannot re-
solve a “small” hadron which is a color singlet as far as
the gluon is concerned.

6 Color singlet contribution

P-wave charmonium decays dominantly through annihi-
lation into gluons, which is a short distance process set
by the scale of the charmonium mass MχJ

. The non-
perturbative information of the bounded system must
come from and be parametrized by the wave function of
the χJ at a small spatial separation, usually taken to be
at the origin. For P-wave charmonium, the vanishing of
the wave function at the origin forces the substitution of
the wave function there by the first derivative of the radial
wave function

R′
P(0) =

4i
√
πmc

3
√

3

∫
d3kk2

(2π)32MχJ=1,2

Ψ̃
(1)
J=1,2(k)

= i

√
16πmc

3
f (1)

χJ=1,2
, (23)

where |R′
P(0)| = 0.22 GeV5/2 and Ψ (1)

J=1,2(k) are functions
of the internal relative momentum of the cc̄ system and
are the reduced wave functions of the χJ ; that means a
power of k has been extracted and put into the covariant
spin part of the χJ wave functions. This is the form of
the wave function commonly used for χJ . The related but
more general form of the color singlet wave functions of
the χJ for J = 1, 2 are

|χ(1)
1 , p〉 =

δab√
3

∫
d3k

(2π)32Mχ1

Ψ̃
(1)
1 (k)

× S
(1)
1 (p, k)|cc̄; k, p〉, (24)

|χ(1)
2 , p〉 =

δab√
3

∫
d3k

(2π)32Mχ2

Ψ̃
(1)
2 (k)

× S
(1)
2 (p, k)|cc̄; k, p〉, (25)

and the covariant spin wave functions of χ1 and χ2 ex-
panded up to O(k2) are

S
(1)
1 (p, k) =

−i
2Mχ1

[
p/+Mχ1 −

2
Mχ1

p/K/

]
× εµναβp

µενKαγβ , (26)

S
(1)
2 (p, k) =

1√
2

[(p/+Mχ2)γµ

+
2

Mχ2

[(p/+Mχ2)Kµ − p/K/γµ]
]
εµνKν , (27)

where K · p = 0. The δab in the above equations is to
ensure that the cc̄ is indeed in a color singlet state.

Since the χJ are even under charge conjugation, they
can annihilate into two or three gluons at leading order
O(α3

s ) [28]. The possible types of diagrams for cc̄ annihi-
lation into three light quark–antiquark pairs are shown in
Fig. 1. As discussed in [28], a color singlet quark–antiquark
system has C-parity (−1)L+S , so P-wave spin-1 charmonia
states are all even C-parity states. Since strong interac-
tions respect C-parity conservation, the intermediate two
or three gluons must also be even under charge conjuga-
tion. Two gluons in a color singlet state are automatically
in an even C-parity state so Figs. 1a,b are possible at the
two gluon stage. However in color space, an examination
of the color structure of the baryon wave functions (14)
and (17) show that exchanges between any two quark lines
are symmetric but in Fig. 1b there is an antisymmetric 3-
gluon coupling so it is eliminated. For the decay via three
gluons in Fig. 1c, it is possible for three gluons to be even
under C-parity through a fabc coupling, but again sym-
metry in color space between the three light quark lines
forces the three gluons to couple via dabc, which violates C-
parity conservation. We are therefore left only with graphs
of type a. These can further be divided into four groups.
Each group can be obtained from those shown in Fig. 2
by permutations of the three light quark lines. Since it is
usual to treat the heavy cc̄ as a non-relativistic system,
the heavy quarks share energy and momentum equally,
or in other words the distribution amplitude of the char-
monium is taken to be a delta function which peaks at
one-half. With this assumption, the hard scattering am-
plitude TH can be worked out. For P-wave decays, one
has to keep the relative momentum K of the cc̄ system
and expand the hard part around K = 0 since only terms
quadratic in K survive the k integration.

Taking Fig. 2a as an example, with xi, yi the momen-
tum fractions and k⊥i,k

′
⊥i the internal transverse mo-

menta of the valence quarks in the baryon and antibaryon,
respectively, the virtualities of the internal lines are
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���
(a) (b) (c)

Fig. 1a–c. Basic graphs that could contribute to χJ color
singlet decay. But actually, only graphs of type a can contribute

����
(a) (b) (c) (d)

Fig. 2a–d. Graphs of type Fig. 1a can be divided further into
four groups

G1 = x1y1(4m2
c)− (k⊥1 + k′

⊥1)
2

= G̃1 − (k⊥1 + k′
⊥1)

2,

G2 = (1− x1)(1− y1)(4m2
c)− (k⊥1 + k′

⊥1)
2

= G̃2 − (k⊥1 + k′
⊥1)

2,

G3 = x3y3(4m2
c)− (k⊥3 + k′

⊥3)
2

= G̃3 − (k⊥3 + k′
⊥3)

2,

Q = (1− x1)y3(4m2
c)− (k⊥1 − k′

⊥3)
2

= Q̃ − (k⊥1 − k′
⊥3)

2,

Qc = 2[x1(1− y1) + y1(1− x1)]m2
c

+(k⊥1 + k′
⊥1)

2

= Q̃c + (k⊥1 + k′
⊥1)

2.

(28)

In fact, Figs. 2a,b give identical contributions and the sim-
ilar contributions from Figs. 2c,d can be obtained by inter-
changing x and y. One gets, after sorting and integrating
out K, for the hard scattering amplitude

T J
H(x, y,k⊥,k⊥′)

=
210
√

2(4π)3m5
cαs(t1)αs(t2)αs(t3)

9
√

3(G1 + iε)(G2 + iε)(G3 + iε)(Q+ iε)(Qc − iε)

×y3
[
(1− 2x1)2−J +

(−1)J−12m2
cx1(x1 − y1)

(Qc − iε)

]
+(x←→ y). (29)

To improve perturbation theory via the renormalization
group, the square of the renormalization scale µR for each
running coupling is set to one of the virtualities ti, i =
1, 2, 3, which are chosen by [12,13] as

t1 = max(G̃1, Q̃c, 1/b21, 1/b
′2
1), (30)

t2 = max(G̃2, Q̃, 1/b22, 1/b′22), (31)

t3 = max(G̃3, 1/b23, 1/b
′2
3), (32)

with nf = 4 and ΛQCD = 220 MeV.
These must be convoluted with the wave functions to

obtain the color singlet decay form factors. In transverse
separation space and in terms of the expressions

CJ
1 (x, y) = y3(1− 2x1)2−J , (33)

CJ
2 (x, y) = (−1)J−1y3x1(x1 − y1), (34)

the hard scattering part T̂ J
H is

T̂ J
H(x, y, b, b′)

=
29
√

2mc

9
√

3
αs(t1)αs(t2)αs(t3)δ2(b1 − b′

1 − b3 + b′
3)

× iπ
2
H

(1)
0 (
√
x3y3(2mc)|b3|)

× iπ
2
H

(1)
0 (
√

(1− x1)y3(2mc)|b1 − b′
1|)

×
{

iπ

[
H

(1)
0 (
√
x1y1(2mc)|b′

1|)
(x1 + y + 1)(1− x1 − y1)

×
(
CJ
1 (x, y) +

CJ
2 (x, y)
x1 + y1

)

−H
(1)
0 (
√

(1− x1)(1− y1)(2mc)|b′
1|)

(1− x1 − y1)(2− x1 − y1)
×
(
CJ
1 (x, y) +

CJ
2 (x, y)

2− x1 − y1

)]

− 4
π

K
(1)
0 (
√
x1(1− y1) + y1(1− x1)mc|b′

1|)
(x1 + y1)(2− x1 − y1)

×
(
CJ
1 (x, y) +

2CJ
2 (x, y)

(x1 + y1)(2− x1 − y1)
)

− 2mc|b′
1|CJ

2 (x, y)√
x1(1− y1) + y1(1− x1)

×K
(1)
1 (
√
x1(1− y1) + y1(1− x1)mc|b′

1|)
(2− x1 − y1)(x1 + y1)

}

+((x, b)←→ (y, b′)). (35)

With this, the decay form factor can be expressed as

BB(1)
J = −i

√
3|R′

p(0)|σJ

8
√
πm

3/2
c

×
∫

[dx][dy]
d2b1

(4π)
d2b3

(4π)
d2b′

1

(4π)
d2b′

3

(4π)

× T̂ J
H(x, y, b, b′) exp[−S(x, y, b, b′, 2mc)]

×‖Ψ̂B(x, b)Ψ̂B(y, b′)‖, (36)

where σJ = 1/(2)1/2, 1 for J = 1, 2, respectively, and
the Sudakov correction factor evaluated at the scale of
2mc is included in the convolution. As mentioned ear-
lier, the presence of this radiative correction in the in-
termediate scale range, together with the MAX prescrip-
tion for the infrared cut-off in the Sudakov factor, b̃ =
max(b1, b2, b3, b′1, b

′
2, b

′
3), renders the whole approach self-

consistent. Actually, since there are two hadrons in the
final state, one can have a separate infrared scale for each
hadron, for example b̃ = max(b1, b2, b3) and b̃′ = max(b′1,
b′2, b

′
3). However, numerically this would make no differ-

ence so we merge the two into one scale. The factorization
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Table 2. Clearly, the color singlet contributions are insufficient
for explaining the experimental data of χJ decay into pp̄

J Γ (1)(χJ → pp̄) (eV) PDG (eV) [23] BES (eV) [29]

1 2.53 75.68 37.84
2 16.58 200.00 118.00

scale µF in the wave function is then set to µF = 1/b̃ as
usual.

The spin structure of the contribution from the di-
agrams of Fig. 2 requires Jz of the charmonium to be
equal to Sz of the quark line that is not attached to other
light quark lines via a gluon, i.e. the first quark line from
the left of the three vertical lines in any of the figures
in Fig. 2. This permits two possibilities for the helicities,
that is (+,+,−) and (+,−,+) of the u- and d-quark lines
in Fig. 2 from left to right. The hard scattering ampli-
tudes are, however, identical for the two arrangements
of helicities. This gives the following sums of products of
the Fourier transform of the scalar functions ΨB

123 of the
baryon–antibaryon, given in (6) and (18), represented in
(36) by ‖Ψ̂B(x, b)Ψ̂B(y, b′)‖. We have

‖Ψ̂B8(x, b)Ψ̂B8(y, b′)‖
= 2{Ψ̂B8

123(x, b)Ψ̂B8
123(y, b

′) + Ψ̂B8
321(x, b)Ψ̂B8

321(y, b
′)

+(Ψ̂B8
123(x, b) + Ψ̂B8

321(x, b))(Ψ̂B8
123(y, b

′) + Ψ̂B8
321(y, b

′))
+(2←→ 3)}, (37)

‖Ψ̂Λ(x, b)Ψ̂Λ(y, b′)‖
= 6{Ψ̂Λ

123(x, b)Ψ̂Λ
123(y, b

′) + Ψ̂Λ
321(x, b)Ψ̂Λ

321(y, b
′)

+(Ψ̂Λ
123(x, b)− Ψ̂Λ

321(x, b))(Ψ̂Λ
123(y, b

′)− Ψ̂Λ
321(y, b

′))
+(2←→ 3)}, (38)

‖Ψ̂B10(x, b)Ψ̂B10(y, b′)‖
= 3{Ψ̂B10

123 (x, b)Ψ̂B10
123 (y, b′) + Ψ̂B10

321 (x, b)Ψ̂B10
321 (y, b′)

+Ψ̂B10
132 (x, b)Ψ̂B10

132 (y, b′) + Ψ̂B10
231 (x, b)Ψ̂B10

231 (y, b′)}. (39)

The results for the color singlet contributions in χ1 and
χ2 decay into a nucleon–antinucleon pair are shown in Ta-
ble 22 together with the experimental measurements. It is
clear that the singlet contribution is insufficient even with
the smaller results of the BES collaboration [29] to ac-
count for the experimental measurements. For uncertain-
ties in the theoretical estimate of the color singlet contri-
bution, the consistence of this calculation within MHSA,
the choice of the proton wave function and the value of the
proton decay constant used etc., we refer to [14]. We will
further discuss the differences between the experimental
results in a later section. The very important color octet
contribution will be investigated in the following section.

2 Our present numbers supersede those previously reported
in [30]

� � � �
(a) (b) (c) (d)

� � �
(e) (f) (g)

� � � �
(h) (i) (j) (k)

� �
(l) (m)

Fig. 3a–m. In addition to the graphs of type Fig. 1, these
form the bases of further contributions in the color octet decay
channel

7 Color octet contribution

In color octet cc̄ decays into a baryon–antibaryon system,
there is a constituent gluon in the initial state so the C-
parity arguments given in Sect. 6 no longer hold. The di-
agrams in Fig. 1 then form the bases of three different
contributing groups. The other possibilities are from the
graphs where the cc̄ pair annihilates into a single gluon,
which would not be possible if the pair were in a color
singlet state. These additional groups are shown in Fig. 3.

In order to form a color singlet baryon–antibaryon
in the final states, this net color from the constituent
gluon must be neutralized. One could allow it to enter
directly into one of the final baryons as a constituent of
a higher Fock state of the latter. However, within the
hard scattering approach, at least one hard gluon must
be exchanged between all the constituent partons; there-
fore such a contribution involving the next higher Fock
state of the baryons will be suppressed by the hard scale
of the process and also by the smaller probability of the
next Fock state. In any case, bringing in a higher state un-
necessarily will introduce additional unknown wave func-
tions. It is therefore best to avoid it. The introduction of
the color octet in the charmonium system is, on the con-
trary, well founded and is indeed necessary as shown in [3,
4] and as we argued earlier. The alternative for color neu-
tralization is done by attaching the constituent gluon onto
all possible places in the diagrams of Fig. 1, Figs. 2 and
3. This will generate about 9–11 diagrams for each group
and the light quark lines will also have to be permuted and
so altogether there are over two hundred diagrams. For-
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tunately, the tedious algebra can be handled completely
by the computer program FORM, and one can arrange
the constituent gluon to be attached automatically to all
possible places in each basic graph and work out the color
factors as well as the perturbative hard scattering part en-
tirely by using this program. In fact, none of the algebra
needs to be worked out by hand.

The color octet wave function of the charmonium is

|χ(8)
χJ
, p〉 =

tacc̄

2
f (8)

χJ

∫
[dz]φ(8)

χJ
(z1, z2, z3)

×S(8)
Jν (p)|cc̄g; p〉. (40)

As explained in [11], the distribution amplitudes of the
octet charmonium φ

(8)
χJ are conveniently taken to be delta

functions that peak at the light-cone momentum z3 =
z = 0.15 for the constituent gluon and z1 = z2 = (1−z)/2
for the heavy quarks while the octet decay constant f (8)

χJ

are obtained from fits in [20,21]. The covariant spin wave
functions for the octet states are given in [21]:

S
(8)
1ρ (p) =

−i
2Mχ1

(p/+Mχ1)εµνρσp
µενγσ, (41)

S
(8)
2ρ (p) =

1√
2
(p/+Mχ2)εσργ

σ. (42)

As we will take the spin of the charmonium to be point-
ing upward without loss of generality, we found it more
straightforward to write these as

S
(8)(+)
1ρ (p) =

1
2
(p/+Mχ1)(ε/

(+)
cc̄ ε(0)ρ − ε/(0)

cc̄ ε
(+)
ρ ), (43)

S
(8)(+)
2ρ (p) =

1
2
(p/+Mχ2)(ε/

(+)
cc̄ ε(0)ρ + ε/

(0)
cc̄ ε

(+)
ρ ) (44)

instead. The ερ is the polarization vector of the constituent
gluon and εµcc̄ is the spin S = 1 vector of the color octet cc̄
system. Then the numerator of any contributing graphs
to χJ decay can all be expressed in the form

NJ = A+ (−1)JA′, (45)

and the difference in the numerator between the χ1 and
χ2 system comes entirely from the sign. In the Appendix
where we list all the contributions from the graphs of each
group, the numerators are all in the above format.

To deal with the color octet contributions, bearing in
mind the advantages of the dynamical setting of the renor-
malization scales and the built-in Sudakov suppression of
the regions of the distribution amplitudes which are prob-
lematic at the end points, one could use again the mod-
ified hard scattering scheme [12,13] as we did in the sin-
glet contribution in the previous section. However, these
advantages are obtained at the expense of complicating
the expressions and the calculations of the perturbative
hard part TH(x,k⊥) by including the internal transverse
momenta in the propagators. These transverse momenta
will have to be integrated out subsequently by convoluting
with the hadronic wave functions. Therefore, the number
of integration variables can be quite high, especially when

we are dealing with a baryon and an antibaryon which
contain three constituent quarks and antiquarks even at
the valence level and there are also many diagrams to con-
sider. To keep things simple, it is advisable to return to the
standard scheme [1] so as to deal only with the distribu-
tion amplitudes and TH(x) without the internal transverse
momenta, and not the more complicated wave functions
and TH(x,k⊥). This is what we will do below. We will
discuss how to get the graphs and the expressions for the
individual color octet contribution to the amplitude in the
next section within the standard scheme.

8 Getting the graphs and calculating TH

of the color octet contributions

In the appendices, we give the graphs and expressions of
our calculation for the color octet contribution. The dia-
grams can be divided into ten basic groups. Each group is
based on one basic graph in which the constituent gluon
from the color octet component of the charmonium has
not yet been drawn out or inserted. Because of the re-
striction of the C-parity, in the absence of the constituent
gluon, these groups individually may or may not exist in
the color singlet contribution to the decay. In the latter
case, they survive solely because of the presence of the con-
stituent gluon. These graphs are those already presented
in Figs. 1 and 3. The group associated with each basic
graph is generated by attaching the constituent gluon to
all possible places on the basic graph except on the initial
c-quark or c̄-quark when they have just emerged from the
charmonium.

The numerator of the hard part TH of each diagram
from each group will be given in the appendices, while the
denominator, which is essentially a product of the propa-
gators in each diagram, will not be written out explicitly
individually but can be derived from those of the basic
graphs (these will be presented with each group) by fol-
lowing some simple rules that follow from the momentum
flow through the graph.

Given that the momenta of the χJ , and those of the
outgoing baryon and antibaryon are PχJ

, PB and PB̄ ,
respectively, the outgoing momenta of the constituents
of the baryon and antibaryon will be assigned the mo-
menta pqi = xiPB , pq̄i = yiPB̄ with i = 1, 2, 3. Here
xi and yi are the momentum fraction of the ith light
quark line of the outgoing baryon–antibaryon subjected
to
∑

i xi =
∑

i yi = 1. In the basic graphs, the constituent
gluon is not included, so the momentum of χJ shared by
the charm–anticharm is pc = z1PχJ

and pc̄ = z2PχJ
with

z1 + z2 = 1. Obviously energy-momentum conservation
requires PχJ

= PB +PB̄ . The product of the gluon propa-
gators in each of the basic graphs is expressed with these
momentum configurations with 2PB · PB̄ = (2mc)2 �
P 2

B , P
2
B̄
∼ 0. On the insertion of the constituent gluon

with momentum fraction z, the condition z1 + z2 = 1 is
now replaced by z+z1+z2 = 1. Therefore, the heavy quark
pair will have only (1 − z)PχJ

instead of the full PχJ
to

annihilate into gluons. The consequence is that in the new
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Fig. 4a,b. Our labelling scheme as applied to a Group 2 and
b Group 4

graphs the momenta flowing along the path or lines con-
necting the initial heavy quark line of the charmonium to
the insertion point of the constituent gluon must be re-
duced by zPχJ

. The momenta in any intermediate heavy
quark line(s) which only exist in those graphs where the cc̄
annihilates into two or more gluons, may also need to be
so adjusted, but that depends on the insertion point. This
momentum shift in the basic graphs brings about a similar
shift in the momenta carried by the propagators along the
same connecting path. In general, this shift can be done
by replacing one of the three (xi, yi) pairs in the affected
propagators including the intermediate heavy quark one
by (xi − z, yi − z).

The momentum fractions and the quark and gluon
lines are labelled as follows for a simpler description, and
they apply to all basic graphs. The top (bottom) heavy
quark line on the left is the initial charm (anticharm)
quark line. The three vertical light quark lines running
from the bottom to the top are light quark line 1 to 3
from left to right. Light quarks (antiquarks) of the baryon
(antibaryon) emerge from the top (bottom). The fractions
xi and yi label that of the quark and antiquark of the ith
light quark line. The gluon line coming directly or indi-
rectly from the charmonium and entering the ith light
quark line is gluon line i, Gi. Whereas the labelling of the
vertical light quark line is for the entire line, each of these
gluon lines connects only two vertices and ends at these
vertices. There will be only one gluon line entering each
light quark line even though each light quark line may be
attached to more than one gluon line. In this case, only one
such line enters the quark line and the other is leaving it.
The gluon line is then labelled with Gi if it is entering light
quark line i and not leaving it as we mentioned above. Fig-
ure 4 illustrates our labelling scheme with some examples.
There are, however, gluon lines that enter a 3- or 4-gluon
vertex instead of a light quark line, see Group 4 and 6 for
examples. These are not labelled. The labelling is for the
purpose of identifying the graphs created from the basic
one by the insertion of the constituent gluon. The insertion
point (I.P.) of the constituent gluon will uniquely identify
each graph thus created, and these graphs will form a
group based on the basic one. Taking the χ1 and χ2 to be
spinning up, the allowed helicities of the three light quark
lines (λ1, λ2, λ3) are (+,+,−), (+,−,+) and (−,+,+).
These three helicity configurations of each graph do not
necessarily have the same or a permutation related nu-

merator as in the color singlet case. The presence of the
constituent gluon makes this impossible in general. The
corresponding numerators are listed in the tables in the
appendices.

As mentioned above, each graph created from a basic
graph by adding the constituent gluon is identified by the
insertion point where the gluon from the color octet state
of the charmonium joins the basic graph. The group of a
basic graph is created by attaching the color octet gluon to
all possible places on the basic graph with the exception of
the initial heavy quark or antiquark line. Also the creation
of a graph with an intermediate state with one gluon and
nothing else is forbidden by C-parity. More explicitly this
means that when the basic graph contains the cc̄ annihila-
tion into one single gluon, the graph with the constituent
gluon attached to this gluon is not possible. Note that this
kind of basic graphs by themselves cannot exist without
the constituent gluon because of C-parity and so they do
not contribute to the color singlet contribution.

The complete graphs created from the basic ones will
be labelled as follows. If the constituent gluon attaches to
one of the light quark lines, it can be with one of the three
quarks (antiquarks) that forms the baryon (antibaryon).
These graphs are labelled as Ui or Li indicating that the
constituent gluon joins the upper (top) or lower (bottom)
part of the quark line i. If the quark line has one or more
intermediate off-shell middle segments, which are sepa-
rated from the upper and lower part by a quark–gluon–
antiquark vertex or vertices to which the octet gluon at-
taches itself, these are labelled Mi for one intermediate
off-shell quark line on quark line i, for example the quark
line 2 of Group 1 (see Fig. 7), and UMi or LMi denote the
upper or lower part of the middle off-shell line if two inter-
mediate middle segments exist on the light quark line i,
for example the quark line 1 of Group 8 (see Fig. 15). Evi-
dently, the constituent gluon can be attached to the gluon
lines as well. These graphs are labelled with Gi (not to be
confused with the gluon line labelling) if the new graph
is created by joining the gluon to the gluon line i by a
3-gluon vertex. If the gluon is attached instead to an un-
labelled gluon line, the graph will be called GR as the con-
stituent gluon attaches to the remaining unlabelled gluon
line. Only one such graph per group is possible at max-
imum and these always vanish due to color. We will not
discuss these graphs further. Whenever a 3-gluon vertex
exists in a basic graph, there is the possibility of attach-
ing the constituent gluon to this vertex to create a com-
plete graph with a 4-gluon vertex. These will be labelled
as 4G for one such possibility or 4G1 and 4G2 when two
such possibilities exist as in Group 9 (see Fig. 16). There
remains attaching the gluon to the heavy intermediate
heavy quark line(s) when this exists. We denote this sim-
ply by graph Q for only one heavy quark line or UQ and
LQ in the presence of two heavy quark lines, one situated
above the other on the basic graph, meaning the gluon
is attached to the upper or lower heavy quark line. The
latter is possible only for Group 5.

The rules for getting the product of propagators for
each new graph from that of the basic graphs are as fol-
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lows. In determining which of the pair (xi, yi) in the prop-
agators to replace by (xi − z, yi − z), it is the i pair for
graphs labelled Ui, Li, Gi, Mi, UMi or LMi. The replace-
ment should only be made to propagators along the line
connecting the heavy quark line to the insertion point
whether they contain (xi, yi) explicitly or not. A modifi-
cation must be made to gluon or light quark propagators
through the relation xi = 1−xj −xk and yi = 1− yj − yk

where j 6= k 6= i and also to any charm propagator only if
it contains the pair (xi, yi) explicitly. So applying this to
graph U1 of Group 5 illustrated in Fig. 5a, only the prop-
agators associated with the gluon line G1 and the upper
heavy quark line in Fig. 12 need this replacement. The
product becomes

1
{(z1 + z − x1)(z1 + z − y1)− 1/4}(2mc)2

× 1
{(z2 − x3)(z2 − y3)− 1/4}(2mc)2

(46)

× 1
(x1 − z)(y1 − z)(2mc)2 + ρ2

1
x2y2(2mc)2

1
x3y3(2mc)2

.

If it is graph L2 of Group 5 in Fig. 5b, only the propagator
of gluon line G2 needs to be changed, and we have

1
{(z1 − x1)(z1 − y1)− 1/4}(2mc)2

× 1
{(z2 − x3)(z2 − y3)− 1/4}(2mc)2

(47)

× 1
x1y1(2mc)2

1
(x2 − z)(y2 − z)(2mc)2 + ρ2

1
x3y3(2mc)2

.

As a third example, applying this to Fig. 5c, that is graph
L3 of Group 1, gives

1
(1− z)2(2mc)2

1
(x3 − z)(1− y1 − z)(2mc)2 + ρ2

× 1
x1y1(2mc)2

1
(1− x1 − z)(1− y1 − z)(2mc)2 + ρ2

× 1
(x3 − z)(y3 − z)(2mc)2 + ρ2 . (48)

It must be mentioned that in the appendices where details
of each group are given, the propagators are written down
without the usual iε. This is to save on typing but it should
be understood implicitly that a iε should be present in
each propagator. This also applies to the expressions here.
Also, we have inserted a term ρ2 in the denominators of
those propagators which carry two poles which cannot be
handled by the iε prescription. The ρ2 is understood to
be the mean squared internal momentum of the baryons
ρ2 = 〈k⊥2〉. It is used here to prevent two possible poles in
any one propagator to occur simultaneously. This problem
has been treated in the same manner in [20] whenever
the iε prescription failed. The actual values of ρ2 depend
on the baryon wave functions. We used ρ(8) = 415.0 MeV
and ρ(10) = 389.0 MeV for the octet and decuplet baryons,
respectively. These values are obtained from the respective
wave functions.

���
(a) (b) (c)

Fig. 5a–c. Examples of complete color octet graphs. a graph
U1 and b graph L2 of Group 5, and c graph L3 of Group 1

��
(a) (b)

Fig. 6a,b. Examples of complete color octet graphs with 4-
gluon vertex. a graph 4G of Group 4 and b graph 4G of Group
10

For 4G graphs, if the unlabelled gluon line attaches to
the 3-gluon vertex connecting gluon line Gi and Gj, then
either replace (xi, yi) with (xi − z, yi − z) or (xj , yj) with
(xj − z, yj − z) in the gluon propagator and do the same
in the heavy quark propagator but in this case only when
either pair of momentum fractions appears explicitly is
sufficient. Applying this to Group 4, we get

1
{(z2 − x2)(z2 − y2)− 1/4}(2mc)2

× 1
(1− x2 − z)(1− y2 − z)(2mc)2 + ρ2

× 1
x1y1(2mc)2

1
x2y2(2mc)2

1
x3y3(2mc)2

, (49)

and to Group 10, the products of the propagator become

1
(1− z)2(2mc)2

1
(1− z)(1− y1 − z)(2mc)2

× 1
(1− x1 − z)(1− y1 − z)(2mc)2 + ρ2

× 1
x2y2(2mc)2

1
x3y3(2mc)2

. (50)

Equations (48) and (50) are fine examples of the necessity
of having to make the shift even if either pair of the mo-
mentum fractions does not appear explicitly in the light
quark and gluon propagators. In this example, the replace-
ment has to be made even for x1+x2+x3 = y1+y2+y3 = 1
to 1− z because the momentum fractions are completely
hidden. For the remaining Q, UQ and LQ graphs, it is
only necessary to replace z1 by z1 + z, and z2 must be left
alone.

One must not forget that the insertion of the con-
stituent gluon will introduce an additional propagator (X-
Prop.) to the basic graph. This is, however, not true for
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the 4G graphs but these have a factor (2mc)2 less than the
other graphs and so a factor of 1/(2mc)2 must be multi-
plied to them so that a global prefactor can be written
down for all graphs. The extra propagator or the extra
factor 1/(2mc)2 is given in the last table of the numera-
tors of each group in the column X-Prop. Similarly, the
structure of group 6 is such that it is a factor (2mc)2 less
than the other group from the start because these graphs
have one propagator less. In order to keep the same overall
factor for all groups, 1/(2mc)2 has been multiplied to the
product of the basic propagators of this group. This ex-
tra factor of course does not correspond to any propagator
but is merely a compensation factor. It must be mentioned
that not all graphs generated from the basic graphs exist.
Some vanish for one reason or another. For these, the ad-
ditional propagators are not given in the tables but have
the entry n.g. (not given) instead.

There exist several more groups that we have not
drawn out explicitly in the appendices. Their basic graphs
may be obtained from those of Group 1, 2 and 2’, 3, 4, 7
and 10 by making one simple change to them. For exam-
ple, attaching the line G2 to quark line 1 at a point below
instead of above the line G1 on Group 2 and 2’, or mov-
ing line G3 in Group 1 and 3 to above the qgq̄-vertex on
quark line 2, or flipping any of the basic graphs of Group
3, 4, 7 and 10 upside down. However, these extra groups
may be included by giving a factor of two on each of their
associated group because these are related to each other
by a simple change of variables. Finally, we must mention
that the graphs in each group must be subjected to further
permutations of the three light quark lines to give further
graphs. But these also can be taken care of by a numerical
factor so each possible insertion point will generate only
one graph and there is no need to divide the graphs any
further or add any more groups.

9 Color singlet and octet contribution
in the standard scheme

9.1 Color singlet contribution

The procedure to obtain the color singlet contribution in
the standard scheme is quite similar to the one we used
in Sect. 6. Remembering that in the standard scheme, the
internal transverse momenta are taken to be negligible in
comparison with the virtualities in all propagators in the
perturbative hard part, TH(x) is free from any k⊥’s and
the latter can be integrated over each wave function to
give the corresponding distribution amplitude. So setting
the k⊥’s in Gi, Q and Qc in (28) to zero, T J

H is now inde-
pendent of k⊥ and k⊥′:

T J
H(x, y) =

2
√

2(4π)3(αs(mc))3

9
√

3m5
cx1x3y1y3(1− x1)2(1− y1)

× 1
[x1(1− y1) + y1(1− x1)]

×
[
(1− 2x1)2−J +

(−1)J−1x1(x1 − y1)
x1(1− y1) + y1(1− x1)

]

+ (x←→ y). (51)

The renormalization scale µR in the above equation has
been set at the constant scale mc in αs because each
gluon takes approximately MχJ

/2 ≈ mc from the char-
monium and so the virtuality is roughly m2

c . Now Fourier
transforming the transverse-momentum-independent T J

H
of transverse position-space yields several delta functions
which force all b’s and b′’s to the origin. As a consequence,
as follows from its definition and derivation, the Sudakov
factor has to be set to unity. The decay form factor defined
in Sect. 5 of χJ into B − B̄ becomes

BB(1)
J = −i

√
3|R′

p(0)|σJ

8
√
πm

3/2
c (4π)4

∫
[dx][dy]T J(1)

H (x, y)

×‖Ψ̂B(x, 0)Ψ̂B(y, 0)‖, (52)

where σJ = 1/(2)1/2, 1 for J = 1, 2 as before. This has
to be combined with that of the color octet contribution
to be discussed below in accordance with our theoretical
arguments given in Sect. 3 to give the true partial decay
width.

9.2 Color octet contribution

The total color octet contribution to BB(8)
J has to be the

sum over all contributing graphs from each group and over
all possible helicity configurations of the light quarks and
antiquarks in the outgoing baryon–antibaryon given in the
appendices:

BB(8)
J =

∑
λ1,λ2,λ3=±

f
(8)
χJ σJ

2mc(4π)4

×
∫

[dx][dy]{T J(8)
H (x, y)}λ1,λ2,λ3

×‖Ψ̂B(x, 0)Ψ̂B(y, 0)‖λ1,λ2,λ3 . (53)

The helicity dependent hard perturbative parts are

{T J(8)
H (x, y)}λ1,λ2,λ3

= i(4παs(mc))3
√

4παsoft
s (2mc)7

×
∑

g∈Groups
m∈Members

SgPgm(x, y){NJ
gm(x, y)}λ1,λ2,λ3 , (54)

where Pgm(x, y) is the product of propagators of the mem-
ber m =U1, U2, U3, L1, L2, L3, . . . etc. of the group
g = 1, 2, 2’, . . ., 10. They can be obtained from the
product of the basic propagators of each group as dis-
cussed in Sect. 8. The Sg is a symmetry factor for the
group g to take care of similar potential groups that are
related to g by a simple change of variables. For the groups
listed in the appendices, Sg ={2,2,2,4,2,1,1,2,1,1,2} for
the group g = 1, 2, 2′, 3, . . ., 10, respectively. The cou-
pling αsoft

s , taken to be equal to π, is that of attaching
the constituent gluon to the basic graphs. It needs special
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treatment because of its different nature in comparison to
the rest of the αs’s [21]. The {Ngm(x, y)}λ1,λ2,λ3 in the
above equation contains the helicity dependence and de-
notes the numerator of the member m of the group g.
These numerators are given in the appendices. Note that
the calculation is really only gauge-invariant to order z2

in the numerator (see [21]) because the cc̄ is treated as
on-shell; therefore all z3 or higher terms in the numera-
tor have to be dropped. The remaining helicity dependent
products of the scalar functions ΨB

123(x, 0) of the baryon
wave functions are given below.

‖Ψ̂B8(x, 0)Ψ̂B8(y, 0)‖+,+,−
= 2{Ψ̂B8

132(x, 0)Ψ̂B8
132(y, 0) + Ψ̂B8

231(x, 0)Ψ̂B8
231(y, 0)

+(Ψ̂B8
132(x, 0) + Ψ̂B8

231(x, 0))(Ψ̂B8
132(y, 0) + Ψ̂B8

231(y, 0))}, (55)

‖Ψ̂B8(x, 0)Ψ̂B8(y, 0)‖+,−,+

= 2{Ψ̂B8
123(x, 0)Ψ̂B8

123(y, 0) + Ψ̂B8
321(x, 0)Ψ̂B8

321(y, 0)

+(Ψ̂B8
123(x, 0) + Ψ̂B8

321(x, 0))(Ψ̂B8
123(y, 0) + Ψ̂B8

321(y, 0))}, (56)

‖Ψ̂B8(x, 0)Ψ̂B8(y, 0)‖−,+,+

= 2{Ψ̂B8
213(x, 0)Ψ̂B8

213(y, 0) + Ψ̂B8
312(x, 0)Ψ̂B8

312(y, 0)

+(Ψ̂B8
213(x, 0) + Ψ̂B8

312(x, 0))(Ψ̂B8
213(y, 0) + Ψ̂B8

312(y, 0))}, (57)

‖Ψ̂Λ(x, 0)Ψ̂Λ(y, 0)‖+,+,−
= 6{Ψ̂Λ

132(x, 0)Ψ̂Λ
132(y, 0) + Ψ̂Λ

231(x, 0)Ψ̂Λ
231(y, 0)

+(Ψ̂Λ
132(x, 0)− Ψ̂Λ

231(x, 0))(Ψ̂Λ
132(y, 0)− Ψ̂Λ

231(y, 0))}. (58)

The other two helicity arrangements of this quantity for
the Λ follow the pattern above for the other octet baryons.
For the decuplet baryons, they are

‖Ψ̂B10(x, 0)Ψ̂B10(y, 0)‖+,+,−
= 3{Ψ̂B10

132 (x, 0)Ψ̂B10
132 (y, 0) + Ψ̂B10

231 (x, 0)Ψ̂B10
231 (y, 0)}, (59)

‖Ψ̂B10(x, 0)Ψ̂B10(y, 0)‖+,−,+

= 3{Ψ̂B10
123 (x, 0)Ψ̂B10

123 (y, 0) + Ψ̂B10
321 (x, 0)Ψ̂B10

321 (y, 0)}, (60)

‖Ψ̂B10(x, 0)Ψ̂B10(y, 0)‖−,+,+

= 3{Ψ̂B10
213 (x, 0)Ψ̂B10

213 (y, 0) + Ψ̂B10
312 (x, 0)Ψ̂B10

312 (y, 0)}. (61)

With this notation, the color octet contribution looks
rather simple. One only has to sum up all graphs from
each and every group and then perform the integrations.

10 The widths of χj decay
into baryon–antibaryons

With our method, discussed in the previous sections, the
color octet contribution which we argued to be necessary
in addition to the singlet contribution for getting the cor-
rect P-wave χJ partial decay widths can be included. Be-
fore giving the numerical results, it must be mentioned
that of all the baryons we considered, only the decay into

Table 3. The partial decay widths for χJ decay into octet and
decuplet baryon–antibaryon pairs. The width of χ1 −→ NN̄
in parentheses is to indicate that this value is a fit unlike all
partial widths of χ2 which are predictions. Based on this fit,
the rest of the χ1 widths are also predictions

Octet Γ (1)+(8) (eV) Decuplet Γ (1)+(8) (eV)
baryons J = 1 J = 2 baryons J = 1 J = 2

χJ → NN̄ (56.27) 154.19 χJ → ∆∆̄ 33.49 124.62
χJ → ΣΣ̄ 28.42 97.69 χJ → Σ∗Σ̄∗ 18.46 71.09
χJ → ΞΞ̄ 21.49 72.62 χJ → Ξ∗Ξ̄∗ 9.42 41.16
χJ → ΛΛ̄ 33.64 69.19

Table 4. Comparing our results with the measured widths
from the PDG [23] data and from the BES collaboration [29].
This branching ratio of χ1 is a fit

Branching ratios (×10−5)
Br(1)+(8) PDG BES

χ1 → pp̄ (6.39) 8.60 ± 1.2 4.30 ± 2.3 ± 2.9
χ2 → pp̄ 7.71 10.00 ± 1.0 5.90 ± 3.1 ± 3.3

proton–antiproton is measured so the majority of our re-
sults are in fact predictions. Moreover, the most recently
reported measured values [29] differ by as much as a fac-
tor of two from those in the Particle Data Tables [23].
This is also true in the case of the decay into pseudoscalar
mesons as noted already in [21]. Therefore we are content
with results that lie somewhere in between these measure-
ments. Until the situation improves, the color octet decay
constants fitted in [20,21] cannot be more accurately de-
termined, hence neither can the current results. In any
case, part of our goals is to show that explicit calculations
do indeed support the theoretical arguments, that is, the
color octet contribution in P-wave χJ decays cannot be
neglected in inclusive nor in exclusive processes.

Our results are shown in Table 3 for the octet and de-
cuplet baryons. The numerical parameters used to obtain
these results which were given throughout this paper have
been collected together again in Appendix B so that in-
terested readers do not have to search through the pa-
per for the values. Only the kinematically plausible de-
cuplet baryons with the lowest masses are considered. In
getting these results, we used the color octet decay con-
stant f (8)

χ2 = 0.9×10−3 GeV2 fitted in [20] for the decay of
χ2 → ππ within the standard hard scattering approach.
We found that in order to obtain reasonable agreement of
the χ1 → pp̄ decay, it must have a smaller color octet de-
cay constant. Therefore, we use f (8)

χ1 = 0.225×10−3 GeV2.
Note that this does not contradict the result in [20], since
χ1 cannot decay into ππ because of parity. and the decay
constant f (8)

χ1 is therefore unconstrained in [20]. The color
octet decay constant for the χ1 being smaller than those
of the J = 0, 2 partners is not too surprising given that
the odd-spin P-wave charmonium is a somewhat different
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heavy quark–antiquark system. Table 3 shows that the de-
cay widths decrease roughly with increasing value of the
baryon masses or with the reduction in the available phase
space.

In Table 4, the branching ratios of the decays into pp̄ is
shown against the experimental measurements. As men-
tioned above, the disagreement between PDG and BES is
sizable. This is true not only in the ratios of the decays
into pp̄ but also in the case of a pair of pseudoscalars in
the final state. Since our results are based on a fit to the
latter, until the experimental situation improves, we have
to settle for our current results.

From Sect. 6 and Table 4, it is clear that only by in-
cluding the color octet can the decay widths of the P-
wave charmonia be brought in the range of the experi-
mental measurements. It would be better to show this in
the modified hard scattering scheme which has the advan-
tage of the dynamical setting of renormalization scales by
the process itself. But due to the complexity of the calcu-
lations, we have to revert to the standard scheme. Recall
that this dynamical setting of scales is only possible if the
Landau pole in αs is suppressed by the Sudakov factor,
or better yet, if it is not present at all. This suggests the
use of one of the analytic models for αs which are free
from the problem of the Landau pole [31–34]. The one
suggested in [33] is particularly appealing because of its
relative simplicity. By combining αanalytic

s with the stan-
dard hard scattering approach, a simpler scheme than the
modified one can be constructed, but which nevertheless
still preserving the best features of that scheme. Under
the new scheme, the amplitude would be given by

M ∼ fχJ
φχJ

(x)⊗ fNφN (x)⊗ fN̄φN̄ (x)

⊗TH(x, αanalytic
s (x)). (62)

We have also tried to use this semi-modified scheme and
again both color singlet and octet must be included. The
details will be given elsewhere [35]. A somewhat similar
use of this analytic αs model in exclusive processes meant
to study pion form factors can be found in [36].

Thus having satisfied ourselves with the genuine ne-
cessity and the correctness of the inclusion of the color
octet state in P-wave charmonium decays, we can now
generalize the arguments to even higher wave quarkonia.
Remembering that the P-wave QQ̄ wave function has a
1/M suppression due to angular momentum, so one can
deduce in a straightforward manner that for a D-wave,
the wave function would be doubly suppressed by 1/M2

in relation to a S-wave. Then to calculate the exclusive
decay of a D-wave quarkonium, one would need to include
not only the color singlet valence state and the next higher
color octet state now with the heavy fermions in a P-wave,
but the next-next higher state must also be included for
a consistent calculation.

Finally, as mentioned in the introduction, the nucleon
wave function constructed from QCD sum rules has large
disagreements with the magnetic form factor measure-
ments below 50 GeV2. Therefore, while lacking an alterna-
tive method to derive the wave function in a fundamental
way, we will have to satisfy ourselves with phenomeno-
logical constructions. We have shown together with [11]
that the wave function thus constructed and its general-
ization to the flavor octet and decuplet baryons provide
a set of reasonable model wave functions. They would no
doubt provide a useful basis for the future study of other
exclusive processes involving baryons at moderate Q2.
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A Basic graphs and contributions for color octet

A.1 Group 1

�
Basic Propagators:

1
(2mc)2

1
x3(1−y1)(2mc)2

1
x1y1(2mc)2

1
(1−x1)(1−y1)(2mc)2

1
x3y3(2mc)2

Fig. 7. Basic graph of Group 1

Table 5a. Numerators of the graphs of group 1 with helicity (+, +, −)

I.P. Num. for graphs of Group 1 with
(λ1, λ2, λ3) = (+, +, −)

J = 1 J = 2
U3 ∅ ∅
L3

√
2(x3 − z)(y3 − z)(1 + y1 − z)

U2 − 4
√

2
3 x3{(x2 − z)(1 + y1 − z) − (−1)J2z(x1 − y1)}

M2 − 4
√

2
3 x3(x3 − z)(1 + y1 − z)

L2
√

2
3 (x3 − z)(y2 − z)(1 + y1 − z)

U1 4
√

2
3 x3{(x1 − z)(1 − y1 − 2z) + (−1)Jz(x1 − y1 + 3(1 − z))}

L1 − 4
√

2
3 x3{(1 + y1 − 2z)(y1 − z) − (−1)Jz(1 − 2y1 + z)}

G3 −√
2(x3 − y3)(x3 − z)(1 + y1 − z)

G2 4
√

2
3 x3{2(1 − z2) − y1(3 + y1 − 6z) + x1(3 − y1 − 2z)

−(−1)J2(x1 − y1)(1 − y1 − 2z)}
G1 4

√
2

3 x3{2(x1 − y1)(1 + y1 − 2z)
+(−1)J(2z(2 − z) + x1(1 − y1 + 2z) + y1(3 − y1 − 6z))}

4G ∅ − 16
√

2
3 x3

Table 5b. Numerators of the graphs of group 1 with helicity (+, −, +)

I.P. Num. for graphs of Group 1 with
(λ1, λ2, λ3) = (+, −, +)

J = 1 J = 2
U3 ∅ ∅
L3 (+, +, −) + (−, +, +)
U2 − 4

√
2

3 x3(x2 − z)(1 + y1 − z)
M2 − 4

√
2

3 x3{(x3 − z)(1 + y1 − z) + (−1)J2(x1 − y1)(1 − y1 − z)}
L2

√
2

3 (x3 − z)(y2 − z)(1 + y1 − z)
U1 4

√
2

3 x3{(x1 − z)(1 − y1 − 2z) + (−1)Jz(x1 − y1 + 3(1 − z))}
L1 − 4

√
2

3 x3{(1 + y1 − 2z)(y1 − z) − (−1)Jz(1 − 2y1 + z)}
G3 (+, +, −) + (−, +, +)
G2 4

√
2

3 x3{2(1 − z2) − y1(3 + y1 − 6z) + x1(3 − y1 − 2z)
−(−1)J2(x1 − y1)(1 − y1 − 2z)}

G1 4
√

2
3 x3{2(x1 − y1)(1 + y1 − 2z)

+(−1)J(2z(2 − z) + x1(1 − y1 + 2z) + y1(3 − y1 − 6z))}
4G ∅ − 16

√
2

3 x3
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Table 5c. Numerators and the additional propagators of the graphs of group
1 with helicity (−, +, +)

I.P. Num. for graphs of Group 1 with X-Prop.
(λ1, λ2, λ3) = (−, +, +)
J = 1 J = 2

U3 ∅ ∅ n.g.
L3 −(−1)J2

√
2z(x1 − y1)(1 − y1 − z) 1

−z(y3−z)(2mc)2

U2 ∅ ∅ 1
−z(x2−z)(2mc)2

M2 ∅ ∅ 1
x3(1−y1)(2mc)2

L2 (−1)J 2
√

2
3 z(x1 − y1)(1 − y1 − z) 1

−z(y2−z)(2mc)2

U1 ∅ ∅ 1
−z(x1−z)(2mc)2

L1 ∅ ∅ 1
−z(y1−z)(2mc)2

G3 −(−1)J
√

2(x1 − y1)(x3 + z)(1 − y1 − z) 1
x3y3(2mc)2

G2 ∅ ∅ 1
(1−x1)(1−y1)(2mc)2

G1 ∅ ∅ 1
x1y1(2mc)2

4G ∅ ∅ 1
(2mc)2

A.2 Group 2 and group 2’

A.2.1 Group 2

�
Basic Propagators:

1
(2mc)2

1
(1−y1)(2mc)2

1
(1−x1)(1−y1)(2mc)2

1
x3(1−y1)(2mc)2

1
x3y3(2mc)2

Fig. 8. Basic graph of Group 2

Table 6a. Numerators of the graphs of group 2 with helicity
(+, +, −) and (+, −, +)

Table 6b. Numerators and the additional propagators of the
graphs of group 2 with helicity (−, +, +)

I.P. Num. for graphs of Group 2 with(λ1, λ2, λ3)
(+, +, −) (+, −, +)

J = 1 J = 2 J = 1 J = 2
U3 ∅ ∅ ∅ ∅
L3 ∅ ∅ −(−1)J 32

√
2

27 z(1 − y1 − z)2

U2 (−1)J 40
√

2
27 x3z(1 − y1 − z) ∅ ∅

M2 ∅ ∅ −(−1)J 32
√

2
27 x3(1 − y1 − z)2

L2 ∅ ∅ ∅ ∅
U1 (−1)J 8

√
2

27 x3z(1 − y1 − z)
M1 ∅ ∅ ∅ ∅
L1 ∅ ∅ ∅ ∅
G3 ∅ ∅ ∅ ∅
G2 4

√
2

3 x3{(1 − z)(2(1 − y1) − z)
−(−1)J(1 − y1 − 2z)(1 − y1 − z)}

I.P. Num. for graphs of Group 2 with X-Prop.
(λ1, λ2, λ3) = (−, +, +)
J = 1 J = 2

U3 ∅ ∅ n.g.
L3 −(−1)J 32

√
2

27 z(1 − y1 − z)2 1
−z(y3−z)(2mc)2

U2 ∅ ∅ 1
−z(x2−z)(2mc)2

M2 ∅ ∅ 1
x3(1−y1)(2mc)2

L2 (−1)J 32
√

2
27 z(1 − y1 − z)2 1

−z(y2−z)(2mc)2

U1 ∅ ∅ 1
−z(x1−z)(2mc)2

M1 ∅ ∅ n.g.
L1 ∅ ∅ n.g.
G3 ∅ ∅ n.g.
G2 ∅ ∅ 1

(1−x1)(1−y1)(2mc)2
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A.2.2 Group 2’

�
Basic Propagators:

1
(2mc)2

1
(1−y1)(2mc)2

1
(1−x1)(1−y1)(2mc)2

1
(1−x1)y3(2mc)2

1
x3y3(2mc)2

Fig. 9. Basic graph of Group 2’

Table 6a’. Numerators of the graphs of group 2’ with helicity
(+, +, −)

Table 6b’. Numerators of the graphs of group 2’ with helicity
(+, −, +)

I.P. Num. for graphs of Group 2’ with
(λ1, λ2, λ3) = (+, +, −)
J = 1 J = 2

U3 22
√

2
27 (1 − z)(x3 − z)(y3 − z)

L3 − 32
√

2
27 (1 − z)(y3 − z)2

U2 − 14
√

2
27 (1 − z)(x2 − z)(y3 − z)

M2 − 40
√

2
27 y3(1 − z)(y3 − z)

L2 − 32
√

2
27 y3{(1 − z)(y2 − z) + (−1)Jz(1 − y1 − z)}

U1 − 8
√

2
27 y3(1 − z)(x1 − z)

M1 64
√

2
27 y3{(1 − z) − (−1)J(1 − y1 − z)}

L1 64
√

2
27 y3{y1 − z + (−1)Jz}

G3 2
√

2(1 − z)(x3 − y3)(y3 − z)
G2 − 4

√
2

3 y3{(1 − z)(x1 − y1 − 3z)
−(−1)J(1 − x1 − 2z)(1 − y1 − z)}

I.P. Num. for graphs of Group 2’ with
(λ1, λ2, λ3) = (+, −, +)
J = 1 J = 2

U3 (+, +, −) + (−, +, +)
L3 − 32

√
2

27 (1 − z)(y3 − z)2

U2 − 14
√

2
27 (1 − z)(x2 − z)(y3 − z)

M2 − 40
√

2
27 y3{(1 − z)(y3 − z)

−(−1)J(1 − x1 − z)(1 − y1 − z)}
L2 − 32

√
2

27 y3(1 − z)(y2 − z)
U1 − 8

√
2

27 y3(1 − z)(x1 − z)
M1 64

√
2

27 y3{(1 − z) − (−1)J(1 − y1 − z)}
L1 64

√
2

27 y3{y1 − z + (−1)Jz}
G3 (+, +, −) + (+, −, +)
G2 − 4

√
2

3 y3{(1 − z)(x1 − y1 − 3z)
−(−1)J(1 − x1 − 2z)(1 − y1 − z)}

Table 6c’. Numerators and the additional propagators of the
graphs of group 2’ with helicity (−, +, +)

I.P. Num. for graphs of Group 2’ with X-Prop.
(λ1, λ2, λ3) = (−, +, +)
J = 1 J = 2

U3 (−1)J 22
√

2
27 z(1 − x1 − z)(1 − y1 − z) 1

−z(x3−z)(2mc)2

L3 ∅ ∅ 1
−z(y3−z)(2mc)2

U2 (−1)J 14
√

2
27 z(1 − x1 − z)(1 − y1 − z) 1

−z(x2−z)(2mc)2

M2 ∅ ∅ 1
(1−x1)y3(2mc)2

L2 ∅ ∅ 1
−z(y2−z)(2mc)2

U1 ∅ ∅ 1
−z(x1−z)(2mc)2

M1 ∅ ∅ 1
(1−y1)(2mc)2

L1 ∅ ∅ 1
−z(y1−z)(2mc)2

G3 (−1)J
√

2(1 − x1 − z)(1 − y1 − z)(y3 + z) 1
x3y3(2mc)2

G2 ∅ ∅ 1
(1−x1)(1−y1)(2mc)2



660 S.M.H. Wong: Color octet contribution in exclusive P-wave charmonium decay into octet and decuplet baryons

A.3 Group 3

�
Basic Propagators:

1
{(z1−x1)(z1−y1)−1/4}(2mc)2

1
x3(1−y1)(2mc)2

1
x1y1(2mc)2

× 1
(1−x1)(1−y1)(2mc)2

1
x3y3(2mc)2

Fig. 10. Basic graph of Group 3

Table 7a. Numerators of the graphs of group 3 with helicity (+, +, −)

I.P. Num. for graphs of Group 3 with
(λ1, λ2, λ3) = (+, +, −)

J = 1 J = 2
U3 − 10

√
2

27 (x3 − z)2(2y1 + z)
L3 8

√
2

27 (x3 − z)(y3 − z)(2y1 + z)
U2 − 4

√
2

27 x3{(x2 − z)(2y1 + z) − (−1)J2z(x1 − y1)}
M2 − 14

√
2

27 x3(x3 − z)(2y1 + z)
L2 − 4

√
2

27 (x3 − z)(y2 − z)(2y1 + z)
U1 14

√
2

27 x3{(x1 − z)(2y1 − z) + (−1)J2z}
L1 − 4

√
2

27 x3{(2y1 − z)(y1 − z) − (−1)J2z(1 − 2y1 + z)}
G3 − 2

√
2

3 (x3 − z)(x3 − y3)(2y1 + z)
G2 −

√
2

3 x3{(x1 + y1 − 2z)(2y1 + z) − 2(2x1 + z)
+(−1)J(x1 − y1)(1 − y1 − 2z)}

G1 2
√

2
3 x3{(x1 − y1)(2y1 − z)

−(−1)J((x1 + z)(2y1 − z) − (x1 + y1 + 2z))}
Q −

√
2

27 x3 { 1
2 (2y1 + z)(2y1 − z) − (x1 + y1 + z)
+(−1)J

( 1
2 (2x1 + z)(2y1 − z) − (x1 + y1 + z)

)}

Table 7b. Numerators of the graphs of group 3 with helicity (+, −, +)

I.P. Num. for graphs of Group 3 with
(λ1, λ2, λ3) = (+, −, +)

J = 1 J = 2
U3 − 10

√
2

27 (x3 − z)2(2y1 + z)
L3 8

√
2

27 {(x3 − z)(y3 − z)(2y1 + z) − (−1)J2z(x1 − y1)(1 − y1 − z)}
U2 − 4

√
2

27 x3(x2 − z)(2y1 + z)
M2 − 14

√
2

27 x3{(x3 − z)(2y1 + z) + (−1)J2(x1 − y1)(1 − y1 − z)}
L2 − 4

√
2

27 (x3 − z)(y2 − z)(2y1 + z)
U1 14

√
2

27 x3{(x1 − z)(2y1 − z) + (−1)J2z}
L1 − 4

√
2

27 x3{(2y1 − z)(y1 − z) − (−1)J2z(1 − 2y1 + z)}
G3 (+, +, −) + (−, +, +)
G2 −

√
2

3 x3{(x1 + y1 − 2z)(2y1 + z) − 2(2x1 + z)
+(−1)J(x1 − y1)(1 − y1 − 2z)}

G1 2
√

2
3 x3{(x1 − y1)(2y1 − z)

−(−1)J((x1 + z)(2y1 − z) − (x1 + y1 + 2z))}
Q −

√
2

27 x3 { 1
2 (2y1 + z)(2y1 − z) − (x1 + y1 + z)
+(−1)J

( 1
2 (2x1 + z)(2y1 − z) − (x1 + y1 + z)

)}
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Table 7c. Numerators and the additional propagators of the graphs of group 3 with
helicity (−, +, +)

I.P. Num. for graphs of Group 3 with X-Prop.
(λ1, λ2, λ3) = (−, +, +)
J = 1 J = 2

U3 ∅ ∅ 1
−z(x3−z)(2mc)2

L3 −(−1)J 16
√

2
27 z(x1 − y1)(1 − y1 − z) 1

−z(y3−z)(2mc)2

U2 ∅ ∅ 1
−z(x2−z)(2mc)2

M2 ∅ ∅ 1
x3(1−y1)(2mc)2

L2 −(−1)J 8
√

2
27 z(x1 − y1)(1 − y1 − z) 1

−z(y2−z)(2mc)2

U1 ∅ ∅ 1
−z(x1−z)(2mc)2

L1 ∅ ∅ 1
−z(y1−z)(2mc)2

G3 −(−1)J 2
√

2
3 (x3 + z)(x1 − y1)(1 − y1 − z) 1

x3y3(2mc)2

G2 ∅ ∅ 1
(1−x1)(1−y1)(2mc)2

G1 ∅ ∅ 1
x1y1(2mc)2

Q ∅ ∅ 1
[(x1−z1)(y1−z1)−1/4](2mc)2

A.4 Group 4

�
Basic Propagators:

1
{(z2−x2)(z2−y2)−1/4}(2mc)2

1
(1−x2)(1−y2)(2mc)2+ρ2

1
x1y1(2mc)2

× 1
x2y2(2mc)2

1
x3y3(2mc)2

Fig. 11. Basic graph of Group 4
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Table 8a. Numerators of the graphs of group 4 with helicity (+,+,-) and (+, −, +)

I.P. Num. for graphs of Group 4 with(λ1, λ2, λ3)
(+, +, −) (+, −, +)

J = 1 J = 2 J = 1 J = 2
U3 −

√
2

3 (x3 − z){(x1 − x3 + z) + (y1 − y3 + z)
−2(x1 − x3 + z)(z2 − y2)
−2(y1 − y3 + z)(z2 − x2)}

(−1)J 2
√

2
3 z(x2 − y2)(2x1 + x3 − z)

L3
√

2
12 (y3 − z){(x1 − x3 + z) + (y1 − y3 + z)

−2(x1 − x3 + z)(z2 − y2)
−2(y1 − y3 + z)(z2 − x2)}

(−1)J
√

2
6 z(x2 − y2)(2y1 + y3 − z)

U2 ∅ ∅ ∅ ∅
L2 ∅ ∅ ∅ ∅
U1 (+, −, +) + (−, +, +) (−1)J 2

√
2

3 z(x2 − y2)(x1 + 2x3 − z)
L1 (+, −, +) + (−, +, +) (−1)J

√
2

6 z(x2 − y2)(y1 + 2y3 − z)
G3 − 5

√
2

12 (x3 − y3){(x1 − x3 + z) + (y1 − y3 + z)
−2(x1 − x3 + z)(z2 − y2)
−2(y1 − y3 + z)(z2 − x2)}

(−1)J 5
√

2
12 (x2 − y2)

× {(2x1 + x3 − z)(y3 + z)
(2y1 + y3 − z)(x3 + z)}

G2 ∅ ∅ ∅ ∅
G1 (+, −, +) + (−, +, +) (−1)J 5

√
2

12 (x2 − y2)
× {(2x3 + x1 − z)(y1 + z)

(2y3 + y1 − z)(x1 + z)}
GR ∅ ∅ ∅ ∅
4G − 5√

2
(x2 − y2) − 5

3
√

2
(x2 − y2) −(−1)J 5

√
2

3 (x2 − y2)

Q ∅ ∅ ∅ ∅

Table 8b. Numerators and the additional propagators of the graphs of group 4 with helicity (−, +, +)

I.P. Num. for graphs of Group 4 with X-Prop.
(λ1, λ2, λ3) = (−, +, +)
J = 1 J = 2

U3 (+, +, −) + (+, −, +) 1
−z(x3−z)(2mc)2

L3 (+, +, −) + (+, −, +) 1
−z(y3−z)(2mc)2

U2 ∅ ∅ n.g.
L2 ∅ ∅ n.g.
U1 −

√
2

3 (x1 − z){(x3 − x1 + z) + (y3 − y1 + z)
−2(x3 − x1 + z)(z2 − y2)
−2(y3 − y1 + z)(z2 − x2)}

1
−z(x1−z)(2mc)2

L1
√

2
12 (y1 − z){(x3 − x1 + z) + (y3 − y1 + z)

−2(x3 − x1 + z)(z2 − y2)
−2(y3 − y1 + z)(z2 − x2)}

1
−z(y1−z)(2mc)2

G3 (+, +, −) + (+, −, +) 1
x3y3(2mc)2

G2 ∅ ∅ n.g.
G1 − 5

√
2

12 (x1 − y1){(x3 − x1 + z) + (y3 − y1 + z)
−2(x3 − x1 + z)(z2 − y2)
−2(y3 − y1 + z)(z2 − x2)}

1
x1y1(2mc)2

GR ∅ ∅ n.g.
4G − 5√

2
(x2 − y2) − 5

3
√

2
(x2 − y2) 1

(2mc)2

Q ∅ ∅ n.g.



S.M.H. Wong: Color octet contribution in exclusive P-wave charmonium decay into octet and decuplet baryons 663

A.5 Group 5

�
Basic Propagators:

1
{(z1−x1)(z1−y1)−1/4}(2mc)2

1
{(z2−x3)(z2−y3)−1/4}(2mc)2

1
x1y1(2mc)2

× 1
x2y2(2mc)2

1
x3y3(2mc)2

Fig. 12. Basic graph of Group 5

Table 9a. Numerators of the graphs of group 5 with helicity (+, +, −)

I.P. Num. for graphs of Group 5 with
(λ1, λ2, λ3) = (+, +, −)

J = 1 J = 2
U3 ∅ ∅
L3 ∅ ∅
U2 −(−1)J

√
2

12 z(2x1 + z)(2x3 + z)
L2 −(−1)J

√
2

12 z(2y1 + z)(2y3 + z)
U1 (−1)J

√
2

4 z{1 − 2x2 − 4(x2 + x3 − z1)(y3 − z1)}
L1 −(−1)J

√
2

6 z{1 − 2y2 − 4(y2 + y3 − z1)(x3 − z1)}
G3 ∅ ∅
G2 ∅ ∅
G1 −(−1)J 5

12
√

2
{(x1 − y1)(1 − 4(x3 − z1)(y3 − z1))
+2x2(2y3 + z)(y1 + z)
−2y2(2x3 + z)(x1 + z)}

UQ −(−1)J 5
√

2
108 {(x3 − y3) − 2z(x2 − y2) + 4(x1 − y1)(1 − z1)2

−4(x1(1 − x3) − x2z1)(1 − y1 − z1)
+4(y1(1 − y3) − y2z1)(1 − x1 − z1)}

LQ ∅ ∅
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Table 9b. Numerators of the graphs of group 5 with helicity (+, −, +)

I.P. Num. for graphs of Group 5 with
(λ1, λ2, λ3) = (+, −, +)

J = 1 J = 2
U3 −

√
2

6 {2(x3 − z)[1 − x2 − y2 − 2(1 − x3 − z1)(y1 − z1)
− 2(1 − y3 − z1)(x1 − z1)]

+(−1)Jz[1 − 2x2 − 4(1 − x3 − z1)(y1 − z1)]}
L3

√
2

4 {2(y3 − z)[1 − x2 − y2 − 2(1 − x3 − z1)(y1 − z1)
− 2(1 − y3 − z1)(x1 − z1)]

+(−1)Jz[1 − 2y2 − 4(1 − y3 − z1)(x1 − z1)]}
U2 −

√
2

6 (x2 − z){1− (x2 + y2 − 2z)
+2(x3 − z1)(y1 − z1)+2(y3 − z1)(x1 − z1)}

L2 −
√

2
6 (y2 − z){1− (x2 + y2 − 2z)

+2(x3 − z1)(y1 − z1)+2(y3 − z1)(x1 − z1)}
U1

√
2

4 {2(x1 − z)[1 − x2 − y2 − 2(1 − x1 − z1)(y3 − z1)
− 2(1 − y1 − z1)(x3 − z1)]

+(−1)Jz[1 − 2x2 − 4(1 − x1 − z1)(y3 − z1)]}
L1 −

√
2

6 {2(y1 − z)[1 − x2 − y2 − 2(1 − x1 − z1)(y3 − z1)
− 2(1 − y1 − z1)(x3 − z1)]

+(−1)Jz[1 − 2y2 − 4(1 − y1 − z1)(x3 − z1)]}
G3 − 5

12
√

2
{4(x3 − y3)[1 − y2 − x2(2y1 + z) − 2(x1 − z1)(y1 − y3 + z)]
−(−1)J [2z(x2(2y1 + z) − y2(2x1 + z))
+x3(1 − 2y2 − 4(x1 − z1)(1 − y3 − z1))
−y3(1 − 2x2 − 4(y1 − z1)(1 − x3 − z1))]}

G2 ∅ ∅
G1 5

12
√

2
{4(x1 − y1)[1 − y2 − x2(2y3 + z) + 2(x3 − z1)(y1 − y3 − z)]
−(−1)J [2z(x2(2y3 + z) − y2(2x3 + z))
+x1(1 − 2y2 − 4(x3 − z1)(1 − y1 − z1))
−y1(1 − 2x2 − 4(y3 − z1)(1 − x1 − z1))]}

UQ − 5
√

2
108 {z(2 + z)(x1 − y1) + (z(2 − z) + 2(x1 + y1))(x2 − y2)

+4(z1 − y3)x2
1 − 4(z1 − x3)y2

1}
LQ 5

√
2

108 {z(2 + z)(x3 − y3) + (z(2 − z) + 2(x3 + y3))(x2 − y2)
+4(z1 − y1)x2

3 − 4(z1 − x1)y2
3}
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Table 9c. Numerators and the additional propagators of the graphs of group 5 with helicity (−, +, +)

I.P. Num. for graphs of Group 5 with X-Prop.
(λ1, λ2, λ3) = (−, +, +)

J = 1 J = 2
U3 −(−1)J

√
2

6 z{1 − 2x2 − 4(x1 + x2 − z1)(y1 − z1)} 1
−z(x3−z)(2mc)2

L3 (−1)J
√

2
4 z{1 − 2y2 − 4(y1 + y2 − z1)(x1 − z1)} 1

−z(y3−z)(2mc)2

U2 −(−1)J
√

2
12 z(2x1 + z)(2x3 + z) 1

−z(x2−z)(2mc)2

L2 −(−1)J
√

2
12 z(2y1 + z)(2y3 + z) 1

−z(y2−z)(2mc)2

U1 ∅ ∅ 1
−z(x1−z)(2mc)2

L1 ∅ ∅ 1
−z(y1−z)(2mc)2

G3 (−1)J 5
12

√
2
{(x3 − y3)(1 − 4(x1 − z1)(y1 − z1))
+2x2(2y1 + z)(y3 + z)
−2y2(2x1 + z)(x3 + z)}

1
x3y3(2mc)2

G2 ∅ ∅ n.g.
G1 ∅ ∅ 1

x1y1(2mc)2

UQ ∅ ∅ 1
[(x1−z1)(y1−z1)−1/4](2mc)2

LQ (−1)J 5
√

2
108 {(x1 − y1) − 2z(x2 − y2) + 4(x3 − y3)(1 − z1)2

−4(x3(1 − x1) − x2z1)(1 − y3 − z1)
+4(y3(1 − y1) − y2z1)(1 − x3 − z1)}

1
[(x3−z1)(y3−z1)−1/4](2mc)2

A.6 Group 6

�
Basic Propagators:

1
(2mc)4

1
x1y1(2mc)2

1
x2y2(2mc)2

1
x3y3(2mc)2

Fig. 13. Basic graph of Group 6

Table 10a. Numerators of the graphs of group 6 with helicity
(+, +, −) and (+, −, +)

Table 10b. Numerators and the additional propagators of
the graphs of group 6 with helicity (−, +, +)

I.P. Num. for graphs of Group 6 with(λ1, λ2, λ3)
(+, +, −) (+, −, +)

J = 1 J = 2 J = 1 J = 2
U3 2

√
2(x3 − z) −√

2{x3 − z + (−1)J2z}
L3 2

√
2(y3 − z) −√

2{y3 − z + (−1)J2z}
U2 −√

2{x2 − z + (−1)J2z} 2
√

2(x2 − z)
L2 −√

2{y2 − z + (−1)J2z} 2
√

2(y2 − z)
U1 −√

2{x1 − z + (−1)J2z}
L1 −√

2{y1 − z + (−1)J2z}
G3 ∅ ∅ ∅ ∅
G2 ∅ ∅ ∅ ∅
G1 ∅ ∅ ∅ ∅

I.P. Num. for graphs of Group 6 with X-Prop.
(λ1, λ2, λ3) = (−, +, +)
J = 1 J = 2

U3 −√
2{x3 − z + (−1)J2z} 1

−z(x3−z)(2mc)2

L3 −√
2{y3 − z + (−1)J2z} 1

−z(y3−z)(2mc)2

U2 −√
2{x2 − z + (−1)J2z} 1

−z(x2−z)(2mc)2

L2 −√
2{y2 − z + (−1)J2z} 1

−z(y2−z)(2mc)2

U1 2
√

2(x1 − z) 1
−z(x1−z)(2mc)2

L1 2
√

2(y1 − z) 1
−z(y1−z)(2mc)2

G3 ∅ ∅ n.g.
G2 ∅ ∅ n.g.
G1 ∅ ∅ n.g.
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A.7 Group 7

�
Basic Propagators:

1
(2mc)2

1
(1−y1)(2mc)2

1
(1−x2)y3(2mc)2

1
x2y2(2mc)2

1
x3y3(2mc)2

Fig. 14. Basic graph of Group 7

Table 11a. Numerators of the graphs of group 7 with helicity (+, +, −) and (+, −, +)

I.P. Num. for graphs of Group 7 with(λ1, λ2, λ3)
(+, +, −) (+, −, +)

J = 1 J = 2 J = 1 J = 2
U3 14

√
2

27 (1 − z)(x3 − z)(y3 − z) −(−1)J 14
√

2
27 z(1 − x2 − z)

×(1 − y1 − z)
L3 32

√
2

27 (1 − z)(y3 − z)2 ∅ ∅
U2 − 40

√
2

27 (1 − z)(x2 − z)y3 ∅ ∅
L2 32

√
2

27 y3{(1 − z)(y2 − z)
+(−1)Jz(1 − y1 − z)}

∅ ∅

U1 26
√

2
27 (1 − z)(x1 − z)(y3 − z) (−1)J 26

√
2

27 z(1 − x2 − z)
×(1 − y1 − z)

UM1 − 8
√

2
27 y3(1 − z)(y3 − z) ∅ ∅

LM1 − 64
√

2
27 y3{(1 − z) − (−1)J(1 − y1 − z)} ∅ ∅

L1 − 64
√

2
27 y3{(y1 − z) + (−1)Jz} ∅ ∅

G3 − 2
√

2
3 (1 − z)(x3 − y3)(y3 − z) (−1)J

√
2

3 (1 − x2 − z)
×(1 − y1 − z)
×(y3 + z)

G2 − 4
√

2
3 y3{2(1 − z)(x2 − y2)

−(−1)J(x2 + z)(1 − y1 − z)}
∅ ∅

Table 11b. Numerators and the additional propagators of the graphs of group 7 with helicity (−, +, +)

I.P. Num. for graphs of Group 7 with X-Prop.
(λ1, λ2, λ3) = (−, +, +)
J = 1 J = 2

U3 −(−1)J 14
√

2
27 z(1 − x2 − z)(1 − y1 − z) 1

−z(x3−z)(2mc)2

L3 ∅ ∅ 1
−z(y3−z)(2mc)2

U2 ∅ ∅ 1
−z(x2−z)(2mc)2

L2 (−1)J 32
√

2
27 zy3(1 − y1 − z) 1

−z(y2−z)(2mc)2

U1 ∅ ∅ 1
−z(x1−z)(2mc)2

UM1 −(−1)J 8
√

2
27 y3(1 − x2 − z)(1 − y1 − z) 1

(1−x2)y3(2mc)2

LM1 ∅ ∅ 1
(1−y1)(2mc)2

L1 ∅ ∅ 1
−z(y1−z)(2mc)2

G3 (−1)J
√

2
3 (1 − x2 − z)(1 − y1 − z)(y3 + z) 1

x3y3(2mc)2

G2 (−1)J 4
√

2
3 y3(1 − y1 − z)(x2 + z) 1

x2y2(2mc)2



S.M.H. Wong: Color octet contribution in exclusive P-wave charmonium decay into octet and decuplet baryons 667

A.8 Group 8

�
Basic Propagators:

1
(2mc)2

1
x2(1−y3)(2mc)2

1
(1−x2)y3(2mc)2

1
x2y2(2mc)2

1
x3y3(2mc)2

Fig. 15. Basic graph of Group 8

Table 12a. Numerators of the graphs of group 8 with helicity (+, +, −) and (+, −, +)

I.P. Num. for graphs of Group 8 with(λ1, λ2, λ3)
(+, +, −) (+, −, +)

J = 1 J = 2 J = 1 J = 2
U3 ∅ ∅ (−1)J 40

√
2

27 x2z(1 − x2 − z)
L3 ∅ ∅ ∅ ∅
U2 ∅ ∅ ∅ ∅
L2 (−1)J 40

√
2

27 y3z(1 − y3 − z) ∅ ∅
U1 ∅ ∅ (−1)J 8

√
2

27 x2z(1 − x2 − z)
UM1 ∅ ∅ ∅ ∅
LM1 ∅ ∅ ∅ ∅
L1 (−1)J 8

√
2

27 y3z(1 − y3 − z) ∅ ∅
G3 ∅ ∅ (−1)J 4

√
2

3 x2(1 − x2 − z)(y3 + z)
G2 (−1)J 4

√
2

3 y3(1 − y3 − z)(x2 + z) ∅ ∅

Table 12b. Numerators and the additional propagators of the graphs of group 8 with helicity (−, +, +)

I.P. Num. for graphs of Group 8 with X-Prop.
(λ1, λ2, λ3) = (−, +, +)
J = 1 J = 2

U3 40
√

2
27 x2{(x3 − z)(y3 − z) + (−1)Jz(1 − x2 − z)} 1

−z(x3−z)(2mc)2

L3 − 32
√

2
27 x2(y3 − z)2 1

−z(y3−z)(2mc)2

U2 − 32
√

2
27 y3(x2 − z)2 1

−z(x2−z)(2mc)2

L2 40
√

2
27 y3{(x2 − z)(y2 − z) + (−1)Jz(1 − y3 − z)} 1

−z(y2−z)(2mc)2

U1 − 8
√

2
27 x2(x1 − z)(y3 − z) 1

−z(x1−z)(2mc)2

UM1 − 64
√

2
27 x2y3{(y3 − z) − (−1)J(1 − x2 − z)} 1

(1−x2)y3(2mc)2

LM1 − 64
√

2
27 x2y3{(x2 − z) − (−1)J(1 − y3 − z)} 1

x2(1−y3)(2mc)2

L1 − 8
√

2
27 y3(x2 − z)(y1 − z) 1

−z(y1−z)(2mc)2

G3 4
√

2
3 x2{2(x3 − y3)(y3 − z)

+(−1)J(1 − x2 − z)(y3 + z)}
1

x3y3(2mc)2

G2 − 4
√

2
3 y3{2(x2 − y2)(x2 − z)

−(−1)J(1 − y3 − z)(x2 + z)}
1

x2y2(2mc)2
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A.9 Group 9

�
Basic Propagators:

1
(2mc)2

1
(1−x2)(1−y2)(2mc)2+ρ2

1
x1y1(2mc)2

1
x2y2(2mc)2

× 1
x3y3(2mc)2

Fig. 16. Basic graph of Group 9

Table 13a. Numerators of the graphs of group 9 with helicity (+, +, −) and (+, −, +)

I.P. Num. for graphs of Group 9 with(λ1, λ2, λ3)
(+, +, −) (+, −, +)

J = 1 J = 2 J = 1 J = 2
U3 − 1√

2
(x3 − z){(1 + x2 − z)(y1 − y3 + z)

+(1 + y2 − z)(x1 − x3 + z)}
(−1)J

√
2z(x2 − y2)(2x1 + x3 − z)

L3 − 1√
2
(y3 − z){(1 + x2 − z)(y1 − y3 + z)

+(1 + y2 − z)(x1 − x3 + z)}
(−1)J

√
2z(y2 − x2)(2y1 + y3 − z)

U2 ∅ ∅ ∅ ∅
L2 ∅ ∅ ∅ ∅
U1 −√

2 { 1
2 (x1 − z)[(1 + x2 − z)(y3 − y1 + z)
+(1 + y2 − z)(x3 − x1 + z)]
−(−1)Jz(x2 − y2)(2x3 + x1 − z)

}

(−1)J
√

2z(x2 − y2)(2x3 + x1 − z)

L1 −√
2 { 1

2 (y1 − z)[(1 + x2 − z)(y3 − y1 + z)
+(1 + y2 − z)(x3 − x1 + z)]
−(−1)Jz(y2 − x2)(2y3 + y1 − z)

}

(−1)J
√

2z(y2 − x2)(2y3 + y1 − z)

G3 ∅ ∅ ∅ ∅
G2 ∅ ∅ ∅ ∅
G1 ∅ ∅ ∅ ∅
GR ∅ ∅ ∅ ∅
4G1 ∅ ∅ ∅ ∅
4G2 ∅ ∅ ∅ ∅
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Table 13b. Numerators and the additional propagators of the graphs of group 9 with helicity (−, +, +)

I.P. Num. for graphs of Group 9 with X-Prop.
(λ1, λ2, λ3) = (−, +, +)
J = 1 J = 2

U3 −√
2 { 1

2 (x3 − z)[(1 + x2 − z)(y1 − y3 + z)
+(1 + y2 − z)(x1 − x3 + z)]
−(−1)Jz(x2 − y2)(2x1 + x3 − z)

}

1
−z(x3−z)(2mc)2

L3 −√
2 { 1

2 (y3 − z)[(1 + x2 − z)(y1 − y3 + z)
+(1 + y2 − z)(x1 − x3 + z)]
−(−1)Jz(y2 − x2)(2y1 + y3 − z)

}

1
−z(y3−z)(2mc)2

U2 ∅ ∅ n.g.
L2 ∅ ∅ n.g.
U1 − 1√

2
(x1 − z){(1 + x2 − z)(y3 − y1 + z)

+(1 + y2 − z)(x3 − x1 + z)}
1

−z(x1−z)(2mc)2

L1 − 1√
2
(y1 − z){(1 + x2 − z)(y3 − y1 + z)

+(1 + y2 − z)(x3 − x1 + z)}
1

−z(y1−z)(2mc)2

G3 ∅ ∅ n.g.
G2 ∅ ∅ n.g.
G1 ∅ ∅ n.g.
GR ∅ ∅ n.g.
4G1 ∅ ∅ none
4G2 ∅ ∅ none

A.10 Group 10

�
Basic Propagators:

1
(2mc)2

1
(1−y1)(2mc)2

1
(1−x1)(1−y1)(2mc)2+ρ2

1
x2y2(2mc)2

× 1
x3y3(2mc)2

Fig. 17. Basic graph of Group 10
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Table 14a. Numerators of the graphs of group 10 with helicity (+,+,-) and (+, −, +)

I.P. Num. for graphs of Group 10 with(λ1, λ2, λ3)
(+, +, −) (+, −, +)

J = 1 J = 2 J = 1 J = 2
U3

√
2(1 − z)(x3 − z)(y3 − y2 − z)

√
2{(1 − z)(x3 − z)(y3 − y2 − z)

+(−1)Jz(y2 + y3 − z)(2x2 + x3 − z)}
L3 ∅ ∅ ∅ ∅
U2

√
2{(1 − z)(x2 − z)(y2 − y3 − z)

+(−1)Jz(y2 + y3 − z)(2x3 + x2 − z)}

√
2(1 − z)(x2 − z)(y2 − y3 − z)

L2 ∅ ∅ ∅ ∅
U1 ∅ ∅ ∅ ∅
M1 ∅ ∅ ∅ ∅
L1 ∅ ∅ ∅ ∅
G3

√
2(1 − z)(x3 − y3)(y3 − y2 − z)

√
2{(1 − z)(x3 − y3)(y3 − y2 − z)

+ (−1)J(y2 + y3 − z)
× (x3y2 + x2y3 + x3y3

+ z(x2 + y2 − z))}
G2

√
2{(1 − z)(x2 − y2)(y2 − y3 − z)

+ (−1)J(y2 + y3 − z)
× (x3y2 + x2y3 + x2y2

+ z(x3 + y3 − z))}

√
2(1 − z)(x2 − y2)(y2 − y3 − z)

GR ∅ ∅ ∅ ∅
4G

√
2{2(1 − z) − (−1)J(y2 + y3 − z)} √

2{2(1 − z) − (−1)J(y2 + y3 − z)}

Table 14b. Numerators and the additional propagators of the graphs of group 10 with helicity (−, +, +)

I.P. Num. for graphs of Group 10 with X-Prop.
(λ1, λ2, λ3) = (−, +, +)
J = 1 J = 2

U3 (−1)J
√

2z(y2 + y3 − z)(2x2 + x3 − z) 1
−z(x3−z)(2mc)2

L3 ∅ ∅ n.g.
U2 (−1)J

√
2z(y2 + y3 − z)(2x3 + x2 − z) 1

−z(y3−z)(2mc)2

L2 ∅ ∅ n.g.
U1 ∅ ∅ n.g.
M1 ∅ ∅ n.g.
L1 ∅ ∅ n.g.
G3 (−1)J

√
2(y2 + y3 − z)

×(x3y2 + x2y3 + x3y3 + z(x2 + y2 − z))

1
x3y3(2mc)2

G2 (−1)J
√

2(y2 + y3 − z)
×(x3y2 + x2y3 + x2y2 + z(x3 + y3 − z))

1
x2y2(2mc)2

GR ∅ ∅ n.g.
4G (−1)J2

√
2(y2 + y3 − z) 1

(2mc)2
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B Numerical parameters

Here we gather together our input as well as other param-
eters used in the calculations in table form.

B.1 Basic parameters

Table 15. Basic input parameters

Symbol Value
ΛQCD 0.22GeV
mc 1.50GeV
µ0 1.00GeV

µR(SHSA) mc

µR(MHSA) square root of the largest
virtuality, see Sect. 6

nf 4

B.2 Charmonium parameters

Table 16. Charmonium parameters

Symbol Value Origin
|R′

P(0)| 0.220GeV5/2 see [20,37]
f

(8)
χ1 0.225 × 10−3GeV2 obtained from fit here

f
(8)
χ2 0.900 × 10−3GeV2 from [20]

z = z3 0.150 from [20,21]
z1 = z2 = (1 − z)/2 0.425 from [20,21]

B.3 Baryon wavefunction parameters

Table 17. Baryon wave function parameters derived in [11]
with the constituent strange quark mass ms = 350 MeV,
the octet baryon decay constant fB8 = 6.64 × 10−3 GeV2

and the transverse size parameter aB8 = 0.75 GeV−1 at the
reference scale µ0. The same for the decuplet baryons are
fB10 = 0.0143 GeV2 and aB10 = 0.80 GeV−1. Note that in
[11] of all the decuplet baryons, only the parameters of ∆ were
given

Baryon B1 B2 B3 B4 B5

N 0.750 0.250 0.000 0.000 0.000
Σ 0.216 0.394 −0.293 −0.914 0.241
Ξ 1.106 0.050 −0.282 1.717 −0.498
Λ −0.721 0.389 −0.150 −0.574 0.093

∆ 0.000 0.000 0.000 0.000 0.000
Σ∗ −0.547 0.182 −0.216 −1.081 0.062
Ξ∗ 0.540 −0.180 −0.382 1.742 −0.413

From these parameters, the mean squared internal
transverse momentum of the baryons ρ2 = 〈k⊥2〉 can be
worked out. The average value is ρ(8) = 415.0 MeV for the
octet and ρ(10) = 389.0 MeV for the decuplet baryons.
Their use as infrared cutoff was discussed in Sect. 8.
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